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Abstract

We use transaction data on U.S. manufacturing imports to construct a novel measure of

supply chain risk at the firm-level: the historical volatility of ocean shipping times. We

isolate the unexpected component of this risk that is induced by weather conditions along

the maritime shipping routes. We first establish that shipping delays are associated

with lower employment and revenues. We then show that importers actively diversify

this source of risk: firms with more volatile supply chains have lower imports, a larger

number of foreign suppliers, and a lower concentration of expenditure across suppliers.

A quantitative model of importing with shipping time risk and importer risk aversion

can rationalize our empirical findings. The model implies that U.S. importers would

prefer to have certain but up to 25% longer shipping times rather than face supply

chain risk.
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1 Introduction

The past decades have seen a dramatic transformation in the international organization of

production, with supply chains spanning an increasing number of countries (Antras and Chor

(2021)). These changes had important consequences for the pattern of international trade,

with intermediate inputs now accounting for roughly two-thirds of global trade (Johnson and

Noguera (2012)). At the same time, the increasing reliance on imported inputs has exposed

firms to novel sources of risk, such as foreign natural disasters, supplier bankruptcy, or port

backlogs (Baldwin and Freeman (2021); Carvalho et al. (2021)). According to a recent survey

of U.S. manufacturing firms by the Federal Reserve Bank of New York, more than 50% of

the respondents were affected by supply chain disruptions in 2020 (Federal Reserve Bank of

New York (2021)). While a growing literature in international trade focuses on foreign input

sourcing (Antras et al. (2017a), Blaum et al. (2018b), Halpern et al. (2015)), little is known

about how importers cope with supply chain risks and how this affects international trade

patterns. An important challenge for answering these questions is the lack of comprehensive

measures of supply chain risk at the firm level.

We shed light on this topic by focusing on a specific source of risk: the volatility of

shipping times. Using transaction-level import data on ocean shipments provided by the U.S.

Census Bureau, we construct measures of shipping time risk at the supplier-product-route

level. We then estimate the effect of shipping time volatility on U.S. manufacturing firms’

performance and sourcing behavior. Our results indicate that U.S. importers that are more

exposed to shipping time risk feature lower imports, a larger number of foreign suppliers,

and a lower concentration of expenditure across suppliers, suggesting that firms actively

diversify this source of risk. We incorporate risky shipping times into an otherwise standard

quantitative model of firm-level importing and assess its ability to replicate our empirical

findings. We show that a model where firms maximize expected profits cannot account for

the negative association between imports and shipping time risk we document in the data.

In contrast, when firms are risk averse, the model can rationalize our empirical findings.

Our methodology relies crucially on the measurement of the components of shipping

times that are unexpected to the importers. We make progress on this front in two ways.

First, we exploit the granularity of the U.S. Census Bureau’s Longitudinal Firm Trade

Transactions Database (LFTTD). The LFTTD provides, for each import transaction since

1992, the identity of the U.S. importer and its overseas supplier, the product at the HS-10

level, value and quantity shipped, the mode of transportation and, importantly, the shipping

time between the foreign port of exit and the U.S. port of entry, after customs are cleared.1

1Since most shipments by airplane, rail, or truck arrive in the U.S. within one day, we focus on vessel
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With this detailed data at hand, we use a rich set of fixed effects to remove the components

of the shipping times that are presumably known to the importers at the time the inputs are

bought, such as shipping charges, the shipment weight, or the seasonality. The volatility of

the resulting ‘‘residualized’’ shipping times is our baseline measure of supply chain risk. This

measure captures several sources of uncertainty, such as weather-related delays, suppliers’

ability to comply with regulation, or delays at the port of entry, due to backlogs or unexpected

inspections.

Second, we refine our risk measure by focusing on the unanticipated variation in shipping

times that is induced by weather conditions along the shipping routes. Weather can have

a sizable effect on shipping times: Filtz et al. (2015) shows that greater wind speeds in

the direction of travel or higher waves significantly reduce shipping times. Our identifying

assumption is that realized weather conditions along the entire maritime route are not

anticipated by the importer at the time the orders are made. To this end, we first use customs

data on the vessel name, foreign port of exit, and U.S. port of entry to determine all the

intermediate stops a vessel made on its journey to the U.S. We then construct the shipment

route by finding the shortest ocean distance for each trip segment of the vessel’s journey,

using data from Eurostat’s SeaRoute. We finally compute the weather conditions along each

shipment route using detailed data on the average height and direction of waves from the

National Oceanic and Atmospheric Administration (NOAA).

We start our analysis by assessing the effects of longer unexpected shipping times on firms’

economic performance. We identify for each importer in a given year the shipments that

were ‘‘delayed’’, i.e. which had a travel time larger than the 95th percentile of the shipping

times distribution for a given route. We document that U.S. importers with a higher share of

delayed inputs experienced significant declines in sales and employment in the same year.

These effects are stronger if we focus only on the delays triggered by weather shocks, and for

importers that do not rely on backup suppliers. These results highlight the negative effects

of supply chain disruptions on firms production, similarly to recent empirical evidence, such

as Boehm et al. (2019) and Carvalho et al. (2021), and provide the basis for our methodology

to measure supply chain risk.

We next study whether U.S. importers adjust their sourcing strategy and import demand

to cope with this source of risk, and explore the different margins of adjustment. We compute

the standard deviation of the unexpected shipping times over 5-year rolling windows for

each foreign supplier and product. We measure the risk exposure of an importer for a

given product with the volatility of its suppliers averaged over all the routes used in the

shipments, but also explore whether firms use air transportation to manage risk in a robustness analysis.
Vessel-based imports accounted for nearly half of all U.S. imports by value in the past decade. See Table 1.
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previous 5 years. We analogously construct a measure of risk that is based only on the travel

times predicted by weather conditions along the route. We estimate panel regressions at

the importer-product-year level and include a rich set of fixed effects and controls. Our

results indicate that U.S. importers that are more exposed to shipping time risk feature

lower imports, a larger number of foreign suppliers, and a lower concentration of expenditure

across suppliers. This suggests that U.S. importers actively diversify this source of risk along

different margins of adjustment. The economic magnitudes are large. We find that going

from the 25th to the 75th percentile of the supply chain risk distribution reduces the total

value imported by 5.3-8.2 percent depending on the specification.

Motivated by these findings, we incorporate supply chain risk into a standard model of

firm-level importing along the lines of Blaum et al. (2018a); Halpern et al. (2015); Gopinath

and Neiman (2014). Firms can source their inputs domestically or from a number of foreign

suppliers and there is imperfect substitutability between suppliers. Firms can choose the

number of foreign suppliers, which is limited by per-supplier fixed costs. The key departure

from the literature is the presence of stochastic input qualities. To map the theory to our

empirical setting, we follow Hummels and Schaur (2013) and assume that slow delivery

times reduce the effective quality of inputs. We assume that importers know the probability

distribution function of their supplier delivery times and choose the number of suppliers and

the values imported before the realizations of the shipping times.

We consider a quantitative version of the model where firms are heterogeneous both

in their productivity and in the shipping risk they face. We calibrate the model to match

salient features of the data. In particular, we set the fixed cost of adding foreign suppliers

to match the aggregate import share, and choose the elasticity of inputs quality to delivery

times to match the observed elasticity of sales to shipping times. Intuitively, this captures

the negative relationship between longer shipping times and final sales we document. We

then examine whether the calibrated model can reproduce the observed relationships between

inputs sourcing and supply chain risk. We find that a model where firms maximize expected

profits fails to do so, as it predicts a positive relationship between shipping time risk and

imports. To rationalize the evidence, we introduce risk aversion in the firm’s problem

following Gervais (2018) and Esposito (2022). We calibrate the risk aversion to exactly match

the elasticity of total imports with respect to delivery risk that we estimate. The implied

calibration suggests that U.S. importers are moderately risk averse: they would prefer to

have certain but up to 25% longer shipping times rather than face supply chain risk.2

2To be precise, we find that U.S. importers would choose, in order to avoid supply chain risk, to increase
the average shipping times from 16 days – the observed average shipping time – to 16-20 days, i.e. an increase
on average of 6%, but up to 25%.

3



Most of the literature on risk and international trade has focused on the impact of

uncertainty on production and exports, i.e., on the output side — see e.g. Ramondo et al.

(2013), Fillat and Garetto (2015), Esposito (2022), Baley et al. (2020) and De Sousa et al.

(2020). In contrast, we focus on the risk faced by importers. On the empirical front, we

provide a novel comprehensive measure of supply chain risk at the firm-level and assess

whether this source of risk has significant implications for the design of firms’ production

processes. Our empirical findings suggest that firms actively use the extensive and intensive

margins of importing to reduce the impact of supply chain disruptions on their production

processes. On the theory side, existing models of firm-level input sourcing typically abstract

from supplier risk considerations — see e.g. Gopinath and Neiman (2014), Halpern et al.

(2015), Antras et al. (2017b) and Blaum et al. (2018b). We contribute to this literature by

exploring how supplier risk affects our understanding of input trade with heterogeneous firms.

There is a small but growing literature that empirically investigates how firms manage

supply chain risk, such as Clark et al. (2014), Huang (2017), Gervais (2018) and Charoenwong

et al. (2020).3 Our paper departs from the approach used by this literature in that we use

transaction-level data of the universe of U.S. importers and their trade relationships with

foreign suppliers, and exploit variation in shipping times across different routes, allowing

to perform an accurate firm-to-firm analysis. On this front, we also connect to a recent

literature that studies firm-to-firm relationships, see e.g. Miyauchi (2018), Tintelnot et al.

(2018), Heise (2019), Bernard et al. (2019) and Esposito and Hassan (2023). In contrast to

this strand of literature, we focus on the risk associated with buyer-supplier relationships.

Using highly granular data on weather conditions along the shipping routes allows us to

identify plausibly unexpected shipping times which we use to study the impact of risk on

firms’ production process.

We also connect to an empirical literature that studies the effect of supply chain disruptions

on firms (Carvalho et al. (2016), Barrot and Sauvagnat (2016) and Boehm et al. (2019)), and

a related strand of works that investigate the importance of shipping times for international

trade (Evans and Harrigan (2005), Hummels and Schaur (2010) and Hummels and Schaur

(2013)). We contribute to this body of work by analyzing the effect of risk in the supply

chain on firms’ import demand.

Finally, we contribute to a strand of literature in management that advocates for the

use of multiple suppliers as a way to reduce supply chain risk, see e.g. Zsidisin et al. (2004),

Kleindorfer and Saad (2005) and Chopra and Sodhi (2014). Our contribution is to conduct a

systematic analysis of the risk diversification behavior of importers by exploiting the richness

of U.S. Census data.

3Handley et al. (2020) study the effect of trade policy uncertainty on firms’ sourcing strategies.
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The remainder of the paper proceeds as follows. Section 2 lays out our conceptual

framework for measuring supply chain risk. Section 3 constructs our measure of risk, while

Section 4 discusses our empirical results. Section 5 presents the model, which we calibrate in

Section 6 to perform our quantitative analysis. Section 7 concludes.

2 Measurement of Supply Chain Risk

The first goal of our analysis is to measure supply chain risk. To this end, we propose a

simple model of stochastic shipping times that will guide our methodology. Based on the

characteristics of our dataset, we consider a buyer f that orders a shipment s of product h

from seller x in time period t. The seller can either be a related party or at arms’ length,

and this is captured by the index a. The shipment arrives to the U.S. on vessel v via route

r, which consists of a combination of the ports of origin and destination and possibly any

intermediate stops made by the vessel. The shipment has a weight of W s and the buyer

spends Cs dollars on freight costs and insurance for shipment s—we refer to these expenses

as shipping charges. The time it takes for the shipment to arrive in the U.S., T sxhrtvfa, is

random and follows:

ln(T sxhrtvfa) = π̄x + ᾱh + γ̄r + θ̄t + ξ̄v + δ̄f + ω̄a (1)

+ πx + αh + γr + θt + ξv + δf + ωa + η ln (Cs) + ρ ln (W s)

where π̄x, ᾱh, γ̄r, θ̄t, ξ̄v, δ̄f , ω̄a capture deterministic components associated with, respec-

tively, a supplier, product, route, time period, vessel, buyer, and related party status, which

are known to the buyer. They capture the average effect of each characteristic on the shipping

times. For instance, the supplier-level average π̄x may reflect the ability of a supplier to

comply with regulation, while the product-level deterministic component ᾱh may capture

the fact that some products are harder to ship or take longer to get cleared at customs. The

route-specific term γ̄r may capture route characteristics, such as ocean distance to the US;

or characteristics of the ports of departure or entry, such as the average time it takes to

unload a shipment. The time component θ̄t may capture the effect of seasonality, as induced

by weather, while ξ̄v may capture the speed or weight of a vessel. The buyer component δ̄f

captures buyer characteristics that may affect shipping times, such as its ability to arrange

logistics with the supplier. Finally, the relationship status component ω̄a may capture that

it is easier to arrange transport when the partners are related rather than at arms’ length.

We further assume that πx, αh, γr, θt, ξv, δf , ωa are mean-zero random variables, each with a
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known distribution. Finally, shipping charges and shipment weight log-linearly affect shipping

times.

Equation (1) implies that the population variance of log shipping times for a tuple

(x, h, r, t, v, f, a), given charges Cs and weight W s is given by:

σ2
xhrtvfa = V

(
T sxhrtvfa

)
= V (πx) + V (αh) + V (γr) + V (θt) + V (ξv) + V (δf ) + V (ωa) . (2)

We assume that equation (1) is the data generating process of the shipping times we

observe in the data. As our goal is to measure the uncertainty around delivery times, a key

step is to isolate the unexpected components from the deterministic ones. We argue that

this depends crucially on the level of disaggregation at which we measure risk. Consider

the most disaggregated measure of risk, at the (x, h, r, t, v, f, a) level. The observed shipping

times within such a tuple contain shipments made with different charges Cs and weights

W s. This variation is expected by the buyer and should not be taken into account when

measuring risk. To take out this variation, we regress the observed log shipping times on

charges and weight and identify η and ρ, and then define the shipping times net of these

controls as t̃sxhrtvfa ≡ ln(T sxhrtvfa) − η̂Cs − ρ̂W s. In what follows, we will work with these

net shipping times. For a tuple (x, h, r, t, v, f, a), an unbiased estimator of the population

variance σ2
xhrtvfa is the sample variance of the observed shipping times within that tuple,

denoted by σ̂2
xhrtvfa, as all the deterministic components drop out.

Consider now measuring risk at a more aggregated level. For example, at the supplier-

product (x, h) level. The sample variance of the net-of-charges shipping times includes also

the deterministic terms γ̄r, θ̄t, ξ̄v, δ̄f and ω̄a, as they are not constant within each (x, h) pair.

In other words, holding the supplier and product constant, the realized net shipping times

include variation induced by deterministic components that vary by route-time, vessel, and

buyer. As these are reasonably known to the importers, they affect the estimated sample

variance, leading to a mis-measurement of supply chain risk.

This issue arises more generally when one measures risk at a more aggregated level than

the tuple (x, h, r, t, v, f, a). To control for the deterministic components associated with the

omitted dimensions, we perform a residualization step. Specifically, we regress the observed

log shipping times on fixed effects for those dimensions that we aggregate over. This identifies

the set of constants for these dimensions. In our analysis below, our baseline measure of risk

is at the supplier-product-route level, (x, h, r). Therefore, we first estimate the coefficients for

Cs and W s and the fixed effects θ̄t, ξ̄v, δ̄f , and ω̄a, and then subtract them from the shipping
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times to obtain the residualized shipping times:

t̂sxhrtvfa ≡ ln(T sxhrtvfa)− η̂ ln (Cs)− ρ̂ ln (W s)− θ̄t − ξ̄v − δ̄f − ω̄a. (3)

By construction, the stochastic components of the time, vessel, buyer, and relationship

characteristics are included in t̂sxhrtvfa, while the deterministic components are not.4 Our

measure of supply chain risk is the sample variance of t̂sxhrtvfa within (x, h, r), denoted by

σ̂2
xhr. In the following section, we implement our methodology using U.S. transaction-level

import data.

3 Constructing Supply Chain Risk

In this section we describe how we construct our measure of supply chain risk. We first

discuss the U.S. Census datasets we employ in our methodology. We then describe how we

construct the maritime route taken by each shipment combining Census data with data on

ocean distance from Eurostat’s SeaRoute, and how we merge data on weather conditions

from NOAA. We finally provide some stylized facts on the factors that affect shipping times.

3.1 Data

Our empirical analysis relies mostly on the Longitudinal Firm Trade Transactions Database

(LFTTD) of the U.S. Census Bureau. This dataset comprises the entire universe of inter-

national trade transactions made by U.S. firms. We focus on all the import transactions

occurred during the period 1992-2016. Each transaction is associated with an identifier of

the U.S. importer, the 10-digit Harmonized System (HS10) product code traded, the mode

of transportation (vessel, air, etc.), the vessel name for ocean shipments, as well as the

value, weight, and quantity shipped. We use the concordance by Pierce and Schott (2012)

to transform the HS10 codes into time-consistent product codes, and calculate prices as

the value of shipment divided by the quantity shipped. Importantly, we also observe the

date of departure abroad (the export date) and the date of importation in the U.S. (after

customs are cleared). We compute (raw) shipping times as the difference, in days, between

the importation date in the U.S. and the export date from the foreign port. For vessel-borne

imports, we also observe the foreign port of departure and the U.S. port of arrival. We use

this information to construct shipping routes, as explained below.

4To be precise, the shipping times t̂sxhrtvfa are the realization of the random variable T̂ sxhrtvfa =
(π̄x + ᾱh + γ̄r) + πx + αh + γr + θt + ξv + δf + ωa. Note that the deterministic components π̄x, ᾱh, γ̄r
do not need to be removed because they are constant within each (x, h, r) tuple.
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The LFTTD contains two additional variables that are important for our purposes. First,

the data report an identifier of the seller in the form of a Manufacturer ID (MID), an

alphanumeric code that combines information on the seller’s country, name, street address,

and city.5 Because shipping negotiations most likely take place at the overall firm-level,

we consider MIDs with the same name and country component but with a different street

address or city component to belong to the same exporter, since plants of the same firm

located in different locations have a different MID.6 This approach follows earlier work by

Kamal et al. (2015) and Kamal and Monarch (2018), who show that the number of MIDs in

the Census data matches well with official firm counts once the street address or the city

component are omitted. Second, the LFTTD data also contain information on whether the

transaction is between related parties. We keep track of related-party status since it could

affect shipping times. We classify an importer-exporter pair as related if it had at least one

related-party transaction in a given year. Since in some cases an import transaction spans

multiple customs records, we collapse the data to the supplier (x) - HS10 (h) - foreign country

(c) - origin port (pe) - destination port (pi) - foreign export date (te) - import date (ti) - vessel

(v) - importer (f) - related party status (a) level. We call such an observation a transaction.

We describe in more detail the data cleaning process in Appendix A.

Table 1 reports the summary statistics of our baseline import dataset. The first column

presents all manufacturing imports for 1992-2016 and the second column shows vessel-borne

trade only. Our dataset covers about 10.5 trillion dollars of imports (in 2009 dollars), of

which about 40 percent are by vessel. We also observe 302 U.S. ports and nearly 1,800 foreign

ports, as well as more than 400,000 unique vessels, which are crucial pieces of information to

construct our measure, as explained below.

The second dataset we use is the Longitudinal Business Database (LBD), which reports in

each year U.S. establishments’ employment and a time-consistent six-digit North American

Industrial Classification (NAICS) 2007 industry code constructed by Fort and Klimek (2018).

We collapse these data to the firm-level, and construct the firm’s main industry in each

year as the 6-digit NAICS code associated with the plant with the highest employment. We

focus our analysis on all importers that are in the manufacturing sector, since these firms

are most likely to source intermediates into production that require an on-time arrival. We

also obtain firms’ total sales, cost of materials, and employee compensation from the Census

5Specifically, the MID consists of the two-digit ISO country code of origin of the good, the first three
characters of the first word of the exporter’s name, the first three characters of the second word of the
exporter’s name, the first four numbers of the street address of the foreign exporter, and the first three letters
of the foreign exporter’s city.

6While different establishments may have different efficiencies or distances to the port, we only observe
port-to-port shipping times.
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Table 1: U.S. Import Transaction Summary Statistics

All Vessel Only
Total Imports ($Bill) 10,540 4,250

Unique Importers (f) 171,400 92,300

Unique Exporters (x) 815,000 407,400

Number of Transactions (millions) 109 35.8

Number of U.S. Ports of Entry (pi) 302

Number of Foreign Ports (pe) 1,795

Number of Origin-Destination Port Pairs 43,080

Unique Vessels (v) 401,700

Source: LFTTD and authors’ calculations. Table summarizes U.S. imports from 1992 to 2016. Values are
reported in billions of 2009 dollars. Vessel imports refer to imports arriving over water.

of Manufactures (CMF) in census years (1992, 1997, etc.) and from the Annual Survey of

Manufacturers (ASM) for non-census years. We construct profits as sales minus materials

and employee costs. We merge these data into the transaction-level import dataset.7

3.2 Construction of Shipping Routes

As the Census data do not provide direct information on shipping routes, we develop an

algorithm to construct them. We assign each transaction to a trip, defined as a journey of a

vessel that begins with the loading of cargo at a foreign port and ends (possibly after some

intermediate stops) with the unloading of cargo at a U.S. port. As a starting point, we sort

all transactions involving a given vessel by their foreign departure date. We then take all the

vessel’s transactions and assign them to a single trip (‘‘Trip 1’’). Next, we find the earliest

arrival date of the vessel in the U.S. for this trip. If there exist any transaction of the same

vessel with an export departure date abroad that is later than this earliest arrival date in

the U.S., we assign these transactions to a new trip (‘‘Trip 2’’). Since the departures are

after the vessel initially arrived in the U.S., they cannot have been from the same trip, and

must have been from a new trip that began after the vessel left the U.S. again. We continue

splitting trips into sub-trips until no further splits are possible.

In the second step, we re-combine some of the previously separated trips. This step

deals with cases in which the U.S. arrival date is possibly misreported.8 For each of the

7Since the LBD , ASM, and CMF data are only available annually, each transaction in the same year will
have the same employment, sales, and costs.

8For example, if transactions 1-5 depart abroad on 6/22 and arrive in the U.S. on 7/5, transaction 6
departs on 6/23 and purportedly arrives on 6/24, and transactions 7-10 depart on 6/25 and arrive on 7/5,
then the procedure would assign transactions 1-6 to one trip and transactions 7-10 to another, even though
almost all shipments arrive on the same day in the U.S.. It seems likely that the arrival date for transaction
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trips assigned in the previous step, we compare the latest importation date in the U.S. to

the earliest departure date abroad of the next trip. If the earliest departure date abroad

of the next trip is before the latest importation date of the earlier trip, then the two trips

must have been part of the same journey and we recombine these trips into one. We again

iterate through this procedure until no more trips can be combined. The resulting dataset

contains trips with completely non-overlapping foreign departure and importation dates for

each vessel.

We construct for each trip an ordered sequence of foreign and U.S. ports. We order

the foreign ports using their mean export dates, i.e., foreign ports with an earlier mean

export date were reached earlier. Similarly, we order the U.S. ports by their mean dates of

importation. Putting together this information, we construct the sequence of ports visited by

each shipment, for example, Le Havre - Birmingham - New York - Newport News. We refer

to a leg of the trip between two ports as trip segment. We next determine the exact route

taken by the vessel by taking the shortest ocean distance for each trip segment, using data

from Eurostat’s SeaRoute program.9

3.3 Construction of Weather Conditions

Our final source of data is information on oceanic weather conditions, which we obtain from

the WaveWatch III model maintained by the University of Hawaii based on NOAA data.

These data contain the height and direction (in degrees) of significant waves, swell, and

wind waves, respectively, at hourly or three-hourly frequency for geo locations at 0.5 degree

distances in the oceans during the period 2011 to 2017. We focus on the direction and height

of significant waves. We compute the daily average of significant wave height and direction

for each geo location in the oceans on each day. If information is unavailable at a geo location,

we interpolate the weather using the information of neighboring geo locations.

For each route segment that we have previously constructed, we obtain the geo coordinates

(longitudes and latitudes) of each point in 0.5 degree increments. We then merge these points

with the information on significant wave height and direction on each day to obtain the

average weather on each route segment on each day. We translate the wave direction into a

relative direction using the likely bearing of the vessel on the route.10 A relative direction

of zero means that the significant waves are in the same direction as the vessel’s travel.

We finally use the trip information to obtain for each transaction the days the good spent

6 is misreported.
9This shortest sea route is not necessarily the shortest air distance, since vessels may have to pass, e.g.,

through the Panama Canal to reach their destination.
10For example, a wave direction of 75 degrees for a vessel traveling at direction 90 degrees would be

translated into a wave direction of 15 degrees relative to the vessel’s path of travel.
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Figure 1: Volatility of Wave Height on Selected Routes

Notes: The figure shows the standard deviation of wave height across all days from 2011-2017 for selected

shipping routes into the U.S.

on each route segment.11 We average the wave height and relative direction across these

days to obtain for each transaction in our dataset the average weather conditions on the

shipment’s journey. Table 10 in Appendix A provides some summary statistics on the mean

and standard deviation of the significant wave height and its (absolute) direction across all

days and route segments in the data.

To illustrate the source of our exogenous variation, Figure 1 reports the standard deviation

of wave height, one of our measures of weather conditions, for some of the main shipping

routes into the U.S. There are significant differences across routes. Routes across the Atlantic

and Pacific have higher volatility in wave height than routes along the coast of South America.

Importantly, there is variation even across routes that are relatively close to each other.

Compared to the Valencia - New York route, the route from Southampton - Savannah, which

crosses the Northern Atlantic Ocean, has a standard deviation of wave height that is more

than 10 percent higher.

11For example, for a good loaded in Le Havre on June 23 onto a vessel that made an intermediate stop in
Southampton on June 25 and that arrived in New York on July 4, we would obtain the weather on the Le
Havre - Southampton segment from June 23 to June 25 and on the Southampton to New York segment on
June 25 to July 4.
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Table 2: Factors Affecting Shipping Times

Dep. Var.: Log Shipping Times (1) (2) (3) (4) (5)
Q2 −0.028∗∗∗

(0.000)
Q3 −0.029∗∗∗

(0.000)
Q4 −0.020∗∗∗

(0.000)
Related-Party 0.014∗∗

(0.000)
Log Shipment Weight 0.008∗∗∗ 0.010∗∗∗

(0.000) (0.000)
Log Shipping Charges 0.004∗∗∗ −0.003∗∗∗

(0.000) (0.000)
R2 0.616 0.616 0.616 0.616 0.617
Route FE Y Y Y Y Y
Observations (thousands) 35, 480 35, 480 35, 480 35, 480 35, 480

Notes: The unit of observation is an importer (f) - exporter (x) - HS10 (h) - vessel (v) - foreign country (c) -
origin port (pe) - destination port (pi) - foreign export date (te) - importation date (ti) combination. Rows
1, 2 and 3 represent quarter fixed effects in Column (1). Number of observations has been rounded to the
nearest 1000 as per U.S. Census Bureau Disclosure Guidelines. Standard errors are clustered at the country
level.

3.4 Factors Affecting Shipping Times

In our analysis, we focus on vessel-borne shipments because the other modes of transportation

(train, truck and airplane) feature virtually no dispersion in shipping times (see Table 11

in the Appendix). Vessel shipments are also substantially slower than all other modes of

transportation, as they take 16 days on average to arrive in the U.S., while air and truck

shipments arrive in the U.S. on average within the same day, while train shipments arrive on

average in four days. Importantly, Table 11 also shows that vessel is the most important

mode of transportation measured by total import value.12

We now examine the factors affecting vessel-borne shipping times to motivate the variables

we will include in our residualization procedure. We present the results in Table 2. All

regressions include fixed effects for the combination of ports used. In column (1), we test

whether seasonality affects shipping times by adding dummies for each quarter of the year.

Shipping times for a given port pair are about 2− 3% shorter in the summer quarters of the

northern hemisphere, highlighting the role of weather in affecting shipping routes. In column

(2), we find that related party transactions have slightly longer shipping times relative to

arms-length transactions. The next columns find a positive relationship between shipping

time and shipment weight, and a negative one between shipping charges and delivery times,

conditional on weight.

12We present some additional statistics on shipping times by geographic region in Appendix B.
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Table 3: Attributes of Importer-Product-Year Tuples

All Vessel Only
Standard Standard

Mean Deviation Mean Deviation
Suppliers per Importer-Product-Year 1.90 3.84 1.83 2.81

Suppliers per Importer-Product-Country-Year 1.39 1.56 1.39 1.39

Dep. Port-Entry Port Pairs per Importer-Product-Year 2.18 3.18

Dep. Port-Entry Port Pairs per Importer-Product-Country-Year 1.75 1.91

Vessels per Port Combination-Year 16.78 44.94

Source: LFTTD and authors’ calculations. Table reports the mean and standard deviation across importer
(f) by product (h) by year or importer (f) by product (h) by country (c) by year tuples during our 1992 to
2016 sample period.

4 Shipping Risk and Import Demand

In this Section, we first document some characteristics of firms’ sourcing behavior (Section 4.1)

and outline our procedure to residualize the shipping times from deterministic components

that are presumably known to the importer (Section 4.2). We then present two key pieces

of empirical evidence. First, we establish that long shipping times, which we informally

refer to as ‘‘delays’’, are associated with lower employment and revenues of U.S. importers

(Section 4.3). This finding is the basis for using the volatility of shipping times as a measure

of risk. Second, we document how firms adjust their sourcing strategy and import demand in

response to shipping time risk (Section 4.4).

4.1 Characteristics of Firms’ Sourcing Behavior

We first document some key characteristics of firms’ sourcing behavior and show that firms

use multiple suppliers and routes even for the same HS10 product. The first row of Table

3 shows that the average importer has 1.9 suppliers for the same HS10 product per year

across all modes of transportation. The large standard deviation compared to the mean

indicates that there is significant heterogeneity across buyers. Figure 2a shows the tail of the

distribution of the number of suppliers used by importers within HS10-year. While the 60th

percentile of importers uses only one supplier for a given product, some firms in the tail of

the distribution have more than 50 suppliers. Overall, 29 percent of importer-product pairs

source from two or more suppliers. These importers tend to be large: firms sourcing a given

product from at least two suppliers account for almost 90% of imports. In Section 4, we will

argue that one reason to use multiple suppliers is to hedge against shipping delay risk.

The second row of Table 3 shows that many firms have multiple suppliers of the same
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Figure 2: Distribution of the Average Number of Suppliers per Importer

(a) Within HS10 Product (b) Within HS10 Product-Country

HS10 even within the same country. The average number of suppliers within importer-HS10-

country-year is 1.4. Figure 2b plots the tail of the distribution of the number of suppliers used

by importers within HS10-country-year. About 21 percent of within-country importer-product

pairs source from multiple suppliers, but these firms account for roughly three quarters of

imports.

Firms may not only use multiple suppliers to hedge against delays but can also, for vessel

shipments, use different ports. The third and fourth rows of Table 3 show that importers

on average use two departure port - entry port combinations to source a given HS10 per

year, even within the same country. The final row shows that the average number of vessels

supplying the U.S. on any port combination is 17, with a large standard deviation.

4.2 Residualization of shipping times

Motivated by the evidence shown in Section 3.4, we implement our residualization procedure

described in Section 2. We construct shipping times net of the deterministic season, vessel,

importer, and arm’s-length components, by running the following regression:

ln(T sxhrtvfa) = θ̄t + ξ̄v + δ̄f + ω̄a + η ln (Cs) + ρ ln (W s) + εsxhrtvfa, (4)

where θ̄t, ξ̄v, δ̄f , ω̄a are season-year, vessel, importer, and relationship status fixed effects, and

Cs and W s are the observed charges and shipment weight, respectively. We obtain from this

regression the residuals t̂sxhrtvfa ≡ ln(T sxhrtvfa)− η̂ ln (Cs)− ρ̂ ln (W s)− θ̄t − ξ̄v − δ̄f − ω̄a as

defined above. These residuals contain the random components of shipping times as well as

the deterministic exporter, product, and route components.
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4.3 Effect of Shipping Delays

Using the residualized shipping times, we identify shipping delays in our dataset in four

steps. First, we compute the average shipping time residual, ¯̂tsxhrtvfa, within each product by

route.13 This variable measures how long it takes on average to ship a specific product from

a specific origin to destination, conditional on season, vessel, importer, relationship status,

charges, and weight. We do not residualize with respect to the exporter component, and

hence delays due to on average slower suppliers will be included in our measure. Second,

we compute for each shipment the log deviation of the observed t̂sxhrtvfa from the associated

average. Third, we set a delay indicator variable Ds
xhrtvfa equal to one if the log deviation of

a tuple is larger than the 95th percentile of deviations in the data. Thus, we flag as ‘‘extreme

delays’’ shipments which took far longer than normal within a given product and port of

departure - port of entry combination. Finally, we multiply Ds
xhrtvfa by the value of affected

shipments, ShipDelayedxhrtvfa = Ds
xhrtvfa · V aluesxhrtvfa. We then aggregate this variable to

the importer-year level by summing across all transactions of the importer in the year, and

scale by he importer’s total production costs (materials plus labor) from the manufacturing

census or the ASM. Our measure thus provides the fraction of the importer’s total inputs

that are subject to the delay. We use our delay variable to estimate the following regression

of firms’ outcomes:

ln(Yft) = β1FracDelayedft + γf + ρt + εft, (5)

where Yft is either number of employees, sales, or operating profits (sales minus materials

and labor costs), FracDelayedft is the share of firm f ’s costs that is subject to import delays,

and γf and ρt are firm and time fixed effects, respectively.

Columns (1)-(3) of Table 4 present the results from an OLS regression. Shipping delays

are significantly negatively associated with all three variables. Increasing the fraction of

delayed shipments in costs by one percent is associated with a drop in sales by 2% and a fall

in profits by 0.9%. The number of employees falls by 0.4%. Therefore, extreme delays in

shipments, which are reasonably unexpected by U.S. importers, have a large and significant

negative impact on importers’ economic outcomes.

A concern with the OLS design is reverse causality. For example, importers that expect a

decline in sales in the current year could request shipments that are relatively slower. We

use weather shocks to isolate a plausibly exogenous source of variation in shipping delays.

Filtz et al. (2015) shows that higher significant waves or greater wind speeds in the direction

of travel can reduce shipping times. Our identifying assumption is that realized weather

conditions along the entire maritime route are not anticipated by the importer at the time

13To limit the number of cells, we approximate the route by the port of departure - port of entry combination.
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Table 4: Effect of Extreme Delays on Firms’ Outcomes

(1) (2) (3) (4) (5) (6)
OLS Weather IV

Dependent Variable (in logs): Sales Profits Employees Sales Profits Employees
Frac Delayed −1.982∗∗∗ −0.869∗∗ −0.371∗∗ −6.131∗∗∗ −3.307∗∗ −0.816∗

(0.387) (0.351) (0.173) (2.056) (1.651) (0.420)
Importer FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
F-Stat 19.53 19.53 19.53
Observations 142, 000 142, 000 142, 000 142, 000 142, 000 142, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the country level.

the orders are made. To this end, we modify the residualization procedure as follows:

ln(T sxhrtvfa) =
(
π̄x + ᾱh + γ̄r + θ̄t + ξ̄v + δ̄f + ω̄a

)
+ πx + αh +

(
γ̃r + θ̃t +Weatherrt

)
+ ξv + δf + ωa + η ln (Cs) + ρ ln (W s) (6)

where we decompose the route component γr and the season-year effect θt into a component

that is due to the weather, Weatherrt, and the residual terms γ̃r and θ̃t. To construct our

instrument, we first find the residualized shipping time t̂sxhrtvfa using equation (4) as before.

We then regress t̂sxhrtvfa on significant wave height, relative direction, and the interaction

between the two, to obtain the predicted shipping time due to weather, t̂s,weatherxhrtvfa . This

variable reflects the component of the shipping time that is due to unanticipated weather

conditions, and is unrelated to the other variables. Table 13 in Appendix B shows that higher

waves increase vessel speed (consistent with Filtz et al. (2015)), and tail wind marginally

increases vessel speed. We then use the same procedure as above to compute a delay indicator

Ds,weather
xhrtvfa based on the weather-induced shipping times, and generate FracDelayedweatherft , the

share of the firm’s costs that are subject to import delays due to weather. We then use this

variable as an instrument for our delay variable.

Columns (4)-(6) of Table 4 show that our results strengthen with the IV specification.

Increasing the fraction of delayed shipments in costs by one percent is associated with a drop

in sales by 6.1%, a fall in profits by 3.3%, and a decline in the number of employees by 0.8%.

We next investigate whether firms with alternative back-up suppliers perform better when

they face extreme delivery delays. For this purpose, we split our delay indicator into two

variables Ds,alt
xhrtvfa and Ds,noalt

xhrtvfa, where Ds,alt
xhrtvfa is equal to one if the shipment is delayed, as

defined before, but the importer has more than one supplier for the affected product, and

Ds,noalt
xhrtvfa is equal to one if the shipment is delayed and there is no alternative supplier. Thus,
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Ds
xhrtvfa = Ds,alt

xhrtvfa +Ds,noalt
xhrtvfa. We then compute the fraction of affected inputs as before and

run

ln(Yft) = β1FracDelayed
alt
ft + β2FracDelayed

noalt
ft + γf + ρt + εft,

where FracDelayedaltft and FracDelayednoaltft are the fraction of imports affected by delays

with and without an alternative supplier, respectively. We instrument for these variables

using the analogous variables computed using the weather-induced shipping times.

Table 14 in Appendix B shows that the effect on firms’ outcomes is significantly more

negative when firms do not have back-up suppliers. A one percent increase in the fraction of

delayed shipments in cost is associated with a decline in sales of 8.3 percent for firms without

alternate suppliers, more than double the decline in sales for those with alternative suppliers.

Similarly, firms without alternative suppliers exhibit a larger response in terms of profits and

employees - a one percent increase in the fraction delayed leads to a 5.8 percent decrease in

sales and a 1.3 percent decrease in the number of employees, relative to 1.6 and 0.4 percent,

respectively, for firms with alternative suppliers. In the next section, we analyze how firms

set up their sourcing strategy to reduce the risk imposed by shipping delays.

4.4 Shipping Time Risk and Import Demand

We next examine how U.S. importers adjust their sourcing strategy in response to the

riskiness of their supply chains. To obtain a measure of risk, we use our baseline residualized

shipping times t̂sxhrtvfa constructed above and compute their mean and standard deviation

within each supplier-HS10-route-year cell using five-year rolling windows, starting from

1992-1996. Cells with fewer than 10 transactions are dropped. The resulting standard

deviations ̂StdT imexhrt−5,t−1 provide a measure of shipping risk of the supplier for the

given route and product. We then estimate the following empirical specification for each

importer-product-year:

ln(Yfht) = β1 ln( ̂StdT imefht−5,t−1) + β2Xfht + γh + γt + εfht, (7)

where Yfht is an importer choice variable. We consider multiple dimensions of sourcing: (i)

the number of suppliers, (ii) the number of routes, (iii) the concentration of suppliers, (iv)

concentration of supplier-routes, (v) the value per supplier per year, and (vi) the total value

imported per year. The variable ̂StdT imefht−5,t−1 is a weighted average over the risk of the

importer’s suppliers and routes over the past five years, where the weights are the importer’s

purchases across all modes of transportation. For shipments by modes other than vessel we

assign a risk of zero, since they mostly arrive within one day. Thus, an importer using the

same supplier and route for vessel imports could face a lower shipping time risk dependent
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Table 5: Shipping Time Risk and Import Demand

(1) (2) (3) (4) (5) (6)
Dep. Var.: Number of Number of HHI over HHI over Value per Value Imported

Suppliers Routes Suppliers Supplier-Routes Supplier-Year per Year
Std Time 0.053∗∗∗ 0.096∗∗∗ −0.036∗∗∗ −0.054∗∗∗ −0.151∗∗∗ −0.098∗∗∗

(0.004) (0.006) (0.002) (0.002) (0.006) (0.007)
Importer FE Y Y Y Y Y Y
Product FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Observations 328, 000 328, 000 328, 000 328, 000 328, 000 328, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level.

on the share of imports by vessel. Shipments by vessel for which we cannot compute the

standard deviation since they are not associated with enough transactions are assigned the

average risk of the remaining imports. The variable Xfht are controls, and γh and γt are

product and year fixed effects, respectively.

Our controls include the suppliers’ mean shipping time over the previous five years. This

accounts for the fact that suppliers located in countries further away may have a higher

standard deviation of shipping times purely because they have more scope for delays. We

also control for the average unit value charged to the importer in year t. Importers could face

a trade-off between risk and cost, with low input prices compensating for higher riskiness.

We explicitly take into account this potential mechanism by controlling for the average unit

value. Third, we control for the weighted average of the suppliers’ shipments used to compute

the risk measure and for the total imports of the importer-product over the past five years.

Larger shipments tend to be associated with a greater weight, which is correlated with more

volatile shipments.

Table 5 presents our results. Column (1) documents a positive and significant relationship

between the number of suppliers used and shipping risk. An increase from the 25th to 75th

percentile of the risk distribution (0.84 log points) increases the number of suppliers by 4.5%.

Column (2) shows the relationship between the number of routes and shipping risk. Again,

we find a positive and significant relationship between the two. An increase from the 25th to

the 75th percentile of the risk distribution increases the number of routes used by 8.1%.

We next look at the relationship between shipping time risk and the concentration of

suppliers for each importer. Column (3) shows a negative and significant relation between

shipping risk and the HHI over suppliers, suggesting that importers with riskier suppliers

diversify their sources more. Column (4) shows that this effect is larger for supplier-route

combinations. In column (5), we look at the relationship between our risk measure and log

value per supplier in each year. We find that going from the 25th to the 75th percentile of the

risk distribution decreases value per supplier-year by 12.7%. Finally, column (6) investigates
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the relationship between shipping time risk and firms’ total imports in a given year. A one

log point increase in riskiness over the past five years is associated with a decline in the total

imports by around 8.2%.

As highlighted in the previous section, some of the remaining variation in shipping times

could be still anticipated by the importer. To alleviate this concern, we refine our risk measure

by focusing on the variation in shipping times induced by weather along the shipping route

of each transaction. The starting point to construct this risk measure is our weather-induced

shipping time t̂sxhrtvfa, constructed similarly to the previous section. We then compute the

mean and the standard deviation of these weather-induced shipping times. Since we only have

weather information for the period 2011 to 2017, we compute our measures over three-year

rolling windows only. We use the standard deviation ̂StdT ime
weather

xhrt−3,t−1 as a measure of

weather-induced shipping risk for the supplier and route. As before, we then compute a

weighted average over an importer’s suppliers and routes to arrive at the importer-specific

risk measure ̂StdT ime
weather

fht−3,t−1. We then estimate the empirical specification:

ln(Yfht) = β1 ln( ̂StdT ime
weather

fht−3,t−1) + β2Xfht + γh + γt + εfht (8)

where the controls are the same as before.

Our results in Table (6) are consistent with the previous results using the overall risk

measure. Going from the 25th to the 75th percentile of the risk distribution increases the

number of suppliers by 4.7% percent and the number of routes by 5.86%. Again we find a

negative and significant relationship between weather-related shipping risk and both HHI

over suppliers and supplier-routes. Columns (5) and (6) show that weather-related shipping

risk is associated with lower imports per supplier and total value imported, with inter-quartile

range effects of -9.8% and -5.3%, respectively.

Table 6: Shipping Time Risk and Import Demand (Weather Risk)

(1) (2) (3) (4) (5) (6)
Dep. Var.: Number of Number of HHI over HHI over Value per Value Imported

Suppliers Routes Suppliers Supplier-Routes Supplier-Year per Year
Std Time 0.077∗∗∗ 0.123∗∗∗ −0.052∗∗∗ −0.074∗∗∗ −0.163∗∗∗ −0.086∗∗∗

(0.008) (0.009) (0.003) (0.003) (0.011) (0.012)
Importer FE Y Y Y Y Y Y
Product FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Observations 72, 500 72, 500 72, 500 72, 500 72, 500 72, 500

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level.
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4.4.1 Robustness

In Appendix B.1, we document that our results are robust to omitting firm fixed effects,

including firms with only one supplier, and alternative sets of controls. We also show that

our results hold when we use only the risk of the main supplier, rather than a weighted

average across all suppliers. Lastly, we analyze whether U.S. firms use different modes of

transportation to diversify shipping risk. We focus on air shipments, as over half of all

importer-product-year combinations are sourced by both vessel and plane (see Table 1). To

do so, we construct a dummy variable that is equal to one if a firm has obtained imports by

air over the past year, and regress it on our measure of risk, constructed for vessel shipments

alone. We include the baseline controls, and additionally include controls for the value

imported by air and vessel separately over the past five years. Table 20 in Appendix B.1

indicates that higher shipping risk is associated with a higher likelihood of using air shipments,

suggesting that firms use air transportation to hedge the ocean shipping risk.

Overall, our findings suggest that U.S. importers systematically react to supplier risk. In

equilibrium, importers matched to riskier suppliers feature more suppliers and lower imports.

An important caveat is that our analysis is silent on the matching between importers and

foreign suppliers. Note, however, that the positive relation between the risk measure and

the number of suppliers holds even with the addition of firm fixed effects, suggesting that

selection may not fully explain this relation.

5 A Model of Input Sourcing with Shipping Risk

In this Section, we lay out a theoretical framework to study the effects of shipping time

risk on import demand. The model builds on the standard models of importing with

firm heterogeneity in Halpern et al. (2015); Blaum et al. (2018b); Gopinath and Neiman

(2014). Similarly to Hummels and Schaur (2013), we assume that inputs’ shipping times

are a measurable component of input quality. The key departure from the literature is the

assumption that such shipping times and thus input qualities are stochastic. In Section 6, we

evaluate the ability of this model of importing with shipping time risk to rationalize the facts

documented in Section 4.

We start by describing the model environment in Section 5.1 and then turn to character-

izing the solution to the firm’s problem in Section 5.2. We describe the equilibrium of the

model in Section 5.3.
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5.1 Environment

We consider a small open economy populated by a mass of firms that produce differentiated

varieties. Firms combine local and foreign inputs according to the following nested structure:

yf = ϕf l
1−γxγ (9)

x =
(
x
ε−1
ε

D + x
ε−1
ε

I

) ε
ε−1

xI =

(
N∑
i=1

(αixi)
κ−1
κ

) κ
κ−1

,

where f denotes a firm, γ ∈ (0, 1) and ε, κ > 1. The firm combines intermediate material

inputs x with labor l with a Cobb-Douglas aggregator, with an heterogeneous efficiency ϕf

drawn from a known distribution with CDF H (·). In turn, materials are a CES aggregator

of a domestic bundle xD and a foreign bundle xI . The firm sources its foreign inputs from N

suppliers with quantities denoted by xi and qualities by αi. We assume that each firm is

matched with a pool of potential foreign suppliers. The foreign inputs are combined with a

CES aggregator with elasticity of substitution κ. This production structure is standard in the

literature, see e.g. Gopinath and Neiman (2014).

We assume that qualities are a function of the time it takes the inputs to be shipped from

the foreign country to the domestic market. Inputs that arrive in a timely manner are more

productive – see Hummels and Schaur (2013) for a similar treatment of time. In particular,

we assume that

αi = d−τi , (10)

where di are the number of days it takes to ship foreign input i to firm ϕ. An additional key

assumption is that shipping times di are stochastic and unknown to the firm when it makes

production choices. For simplicity, we assume that the input shipping times are ex-ante

symmetric and independent. That is, the d′is are i.i.d. across input suppliers. We denote

their CDF by Gf (·) and assume it is known to the firm. We allow this distribution to be

firm-specific as, in our quantitative exercise below, firms differ in the riskiness of their foreign

suppliers.

In terms of market structure, we assume that firms are price takers in input markets.

Thus, firms can use any quantity of the foreign inputs, the domestic bundle and labor at

prices p∗, pD and w, respectively. We assume that foreign inputs prices p∗ are the same

across all suppliers. Any variable trade costs are embedded in these prices p∗. As standard

in the literature, we assume that the extensive margin of trade is limited by fixed costs. In
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particular, each additional foreign supplier entails payment of a fixed cost F units of domestic

labor.14

There is a representative consumer that is endowed with L units of labor and consumes

the locally produced goods with preferences given by

U =

(∫
cf

σ−1
σ df

) σ
σ−1

, (11)

where σ > 1 and cf denotes final consumption of the good produced by firm f. In addition,

we assume a structure of roundabout production by which firms use the output of all other

domestic firms as inputs. In particular, we assume that the domestic bundle xD is produced

according to a CES aggregator given by (11).15 Finally, we assume that firms compete under

monopolistic competition on the output market.

5.2 Firm’s problem

The total sales of firm f , which include demand from both consumers and other firms, are

given by

RDf = yf
1−1/σP

σ−1
σ S1/σ, (12)

where P is the CES price index associated with (11) and S denotes total spending. Both P

and S are endogenous variables determined in general equilibrium.

Firms are risk-neutral and maximize profits in two stages. In the first stage, firms choose

N , x and xD under uncertainty about the shipping times of their foreign inputs. After the

uncertainty is realized, firms choose the optimal level of labor conditional on the choices for

N , x and xD. In the second stage, profits are given by

maxlp πf = ϕf
σ−1
σ l(1−γ)

σ−1
σ

x ε−1
ε

D +

(
N∑
i=1

α
κ−1
κ

i

) κ
κ−1

ε−1
ε

x
ε−1
ε

γ ε
ε−1

σ−1
σ

P
σ−1
σ S1/σ−pDxD−Np∗x−wl−NF,

(13)

where αi are the quality shocks which depend on the realized shipping times. The optimal

14For tractability, we assume that these fixed costs are not supplier-specific. For a treatment of the case
with supplier-specific fixed costs in a deterministic setting see Antras et al. (2017b).

15The assumption that the CES aggregators for the domestic bundle and consumer utility coincide is made
for tractability. Under this assumption, we do not need to treat sales to the consumer and to other firms
separately in the firm’s problem.
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choice of production labor is given by

lf =

γ̃ϕf σ−1
σ

x ε−1
ε

D +

(
N∑
i=1

α
κ−1
κ

i

) κ
κ−1

ε−1
ε

x
ε−1
ε

γ ε
ε−1

σ−1
σ

P
σ−1
σ S1/σw−1


1

1−γ̃

(14)

where γ̃ ≡ (1− γ) σ−1
σ

. In the first stage, taking lpf as given, the firm maximizes expected

profits. By plugging the expression for lf into equation (13), expected profits are

maxxD,x,N E [πf ] = χfE


x ε−1

ε
D +

(
N∑
i=1

(di)
− τ(κ−1)

κ

) κ
κ−1

ε−1
ε

x
ε−1
ε

ψ
−pDxD−Np∗x−NF, (15)

where χf and ψ are functions of firm efficiency, equilibrium objects and parameters.16 Note

that the expectation operator is taken over the possible realizations of di and thus depends

on the distribution of shipping times Gf (·). We now turn to defining the equilibrium of the

economy.

5.3 Equilibrium

We consider an equilibrium where firms maximize profits, the consumer maximizes utility,

and goods markets clear. An equilibrium can be fully characterized by the pair (S, P ) , where

S is the level of total domestic spending and P is the price index of the locally-produced

manufacturing bundle. Note that the price of the domestic input bundle is given by pD = P

due to the symmetry between the domestic input aggregator and consumer utility. The price

of foreign inputs is exogenously given by p∗. We now turn to the characterization of the

equilibrium.

The consumer’s budget constraint is:

PC = wL+ Π,

where Π ≡
∫
πfdf are total firms’ profits. Standard calculations imply that P =

(∫
pf

1−σdf
) 1

1−σ .

Note that both prices and profits depend on the actual realization of the shipping days:

πf = π ({di};S, P, w;ϕf )

16In particular, χf ≡
(
ϕf

σ−1
σ P

σ−1
σ S1/σ

) 1
1−γ̃

w− γ̃
1−γ̃

[
(γ̃)

γ̃
1−γ̃ − (γ̃)

1
1−γ̃
]

and ψ ≡ γ ε
ε−1

σ−1
σ

1
1−γ̃ .
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and

pf = p ({di};S, P, w;ϕf )

where {di} are the realized shipping times for each supplier i of firm f .17 Thus, the price

index and total profits are given by

P =

(∫ ∫
p ({di};S, P, w;ϕ)1−σ dG (d) dH (ϕ)

) 1
1−σ

(16)

Π =

∫ ∫
π ({di};S, P, w;ϕ) dG (d) dH (ϕ) . (17)

Aggregate spending must satisfy

S = wL+ Π + pD

∫
xD (S, P, w;ϕ) dH (ϕ) , (18)

where xD (S, P, w;ϕ) is the demand for the domestic input.

The consumer budget constraint and the goods market clearing conditions imply that the

trade balance is given by

TB = − (L− Ld) , (19)

where Ld is the total labor demand and L is the labor endowment of the consumer. Because

the equilibrium does not impose labor market clearing, the manufacturing sector can be a net

supplier of labor to the rest of the economy and thus attain a trade deficit.

An equilibrium consists of the vector (S, P ) such that equations (16) and (18) are satisfied

and firms maximize profits. It is relatively straightforward to augment the model with the

inclusion of a non-tradeable sector and international trade in final manufacturing goods, as

in Blaum (2019).

6 Quantitative Analysis

In this section, we assess whether the theory outlined above can rationalize the empirical

findings of Section 4. To this end, we first calibrate the parameters of the model to match

salient features of the data. We then simulate the model and reproduce the risk regressions

we estimate in the data. We show how the model fails to match the empirical elasticities.

We further show that introducing risk aversion in the firms’ maximization problem allows

the model to match the elasticities.

17Note that we have written both pf and πf explicitly as a function of the equilibrium variables S, P and
w (as the choices N , x and xD ultimately depend on those and parameters).
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Table 7: Calibration of Baseline Model

Parameters Moments Model Data

Fixed Cost per Supplier F 0.05 Aggregate Import Share 0.23 0.23
Inputs Quality Elasticity τ 0.47 Revenue Elasticity -0.06 ND

Notes: The import share corresponds to the fraction of materials expenditures accounted by imported inputs in the manufac-
turing sector. Revenue elasticity is the elasticity of firm revenues to the average shipping times. ND stands for ‘‘not-disclosed’’:
we have submitted the disclosure request to the U.S. Census, but it has not been approved yet.

6.1 Calibration

We take the following parameters from the literature. As in Blaum et al. (2018b), we set the

output elasticity of materials to γ = 0.6 and the elasticity of substitution between domestic

and foreign inputs to ε = 2.38. The elasticity of substitution across foreign suppliers is set to

κ = 8 from Eaton and Kortum (2002), and the demand elasticity to σ = 5, in line with the

average estimate for manufacturing differentiated goods in Broda and Weinstein (2006).

We assume that firm efficiency ϕ is drawn from a log-normal distribution. We set the

mean and variance of efficiency to match the mean and variance of log-sales observed in the

data. Shipping days are also drawn from a log-normal distribution, with mean and variance

taken from our dataset. To introduce cross-sectional variation in the supply chain risk faced

by importers, we assume that there are two types of risk, low and high. In other words, half

of the firms in our economy draw the shipping days from a distribution with low variance,

and the other half from a distribution with high variance. We set these variances as the

averages of the baseline importer-level risk measure we use in our empirical analysis (the

standard deviation of the shipping times ̂StdT imefht−5,t−1) within the groups of firms above

and below the median risk measure.

We then calibrate the fixed cost of adding foreign suppliers, F , and the elasticity of

input quality to shipping time, τ, to match the observed aggregate import share and the

elasticity of revenue with respect to average shipping times.18 Intuitively, this captures the

negative relationship between longer shipping times and final sales we have documented in

the empirical analysis. Table 7 summarizes the results of the calibration.

6.2 The Effect of Supply Chain Risk

With the calibrated model at hand, we now examine whether the model can match the

observed relationships between firm choices and supply chain risk. In particular, we simulate

a large number of importers and run the same regressions we have estimated in the data.

18We normalize the foreign input price p∗ and the wage w to 1.
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Table 8: Risk Elasticities

Variable Data Baseline Model Extended Model

Number of suppliers 0.08 0.05 0.09
Value imported per supplier -0.16 0.05 -0.16
Total value of imports -0.08 0.1 -0.07

Notes: The table reports the elasticity of each variable with respect to the standard deviation of shipping times predicted by

weather, ̂StdT ime
weather

fht−3,t−1. The empirical elasticities are reported in Table 6, columns 1, 5 and 6.

We regress the number of suppliers, the value imported per supplier, and the total value of

imports on the importer-level measure of supply chain risk, which is the standard deviation

of shipping times. As shown in Table 8, the model delivers elasticities that are different from

the ones estimated in Table 6: the elasticity of the number of suppliers is positive but a bit

lower than in the data, and the intensive margin elasticities have the wrong sign. Therefore,

the standard model of importing augmented with shipping time risk is unable to reproduce

the negative relationship between supplier risk and import values documented above.

A Model with Importer Risk Aversion To rationalize the data, we modify the baseline

model and introduce risk aversion in the firm’s problem. In particular, we follow Gervais

(2018) and Esposito (2022) and assume that each firm maximizes the following function:

max E (πf )−
ρ

2
V ar (πf ) (20)

where ρ ≥ 0 is the coefficient of absolute risk aversion. This expression can be micro-founded

with a second-order approximation of a CARA utility function. Importantly, this is a simple

and intuitive way to introduce (constant) risk aversion in the firms’ decision making process.

Next, we discipline the risk aversion parameter ρ with the estimated elasticities of the

number of suppliers and the imports per supplier with respect to shipping risk. In particular,

we jointly calibrate the model parameters F , τ, ρ to match the same moments as in the

baseline calibration as well as the estimated risk elasticities.

Our results suggest a risk aversion of 9 and values for F and τ similar to the baseline

calibration — see Table 9. To give economic significance to this estimate, we compute the

Certainty Equivalent (CE) implied by our calibration. We define CEf as the minimum

number of certain shipping days such that firm f would choose to avoid supply chain risk.

We can compute CEf such that the the expected utility the firm derives when facing supply

chain risk equals the utility the firm obtains when there is no uncertainty and shipping times

are always equal to CEf :
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Table 9: Calibration, extended table

Panel A: Calibrated Parameters Baseline Model Extended Model
Fixed Cost per Supplier F 0.05 0.12
Quality Elasticity τ 0.47 0.43
Risk aversion ρ - 9
Panel B: Targeted Moments Data Baseline Model Extended Model
Import Share 0.23 0.23 0.21
Revenue Elasticity ND -0.06 -0.05
Elasticity of number of suppliers 0.08 - 0.09
Elasticity of imports per supplier -0.16 - -0.16
Panel C: Fixed Parameters Baseline Model Extended Model
Demand elasticity σ 5 5
Elasticity between domestic and foreign ε 2.38 2.38
Materials share γ 0.6 0.6
Elasticity across foreign suppliers κ 8 8
Average shipping time (days) 16 16
Variance of shipping times (high type) ND ND
Variance of shipping times (low type) ND ND
Average productivity 2 2
Variance of productivity 0.23 0.23

Notes: The import share corresponds to the fraction of materials expenditures accounted by imported inputs in the manufac-
turing sector. Revenue elasticity is the elasticity of firm revenues to the average shipping times. ND stands for ‘‘not-disclosed’’:
we have submitted the disclosure request to the U.S. Census, but it has not been approved yet.

E (πf )− ρ

2
V ar (πf ) = χf

(
(xD)

ε−1
ε + (x)

ε−1
ε

(
(CEf )

−τ
) ε−1

ε

(N)
κ
κ−1

ε−1
ε

)ψ
− pDxD −Npx−NF

By construction, the certainty equivalent is larger than the average shipping time if the firm

is risk averse, and it is heterogeneous across importers, as they vary in their productivity

and risk type. Our calibrated model implies that CEf ranges between 16-20 days, with an

average of 17. This means that U.S. importers would choose, in order to avoid supply chain

risk, to increase their shipping times from 16 (the average number of shipping days in the

data) to 16-20 days, i.e. an increase on average of 6%, but up to 25%.

7 Conclusions

In this paper, we use U.S. Census shipment-level data to construct a novel measure of

supply chain risk. We then explore how exposure to shipping time risk correlates with the
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pattern of import demand of U.S. manufacturing firms at the intensive and extensive margins.

Our results suggest that U.S. importers that are more exposed to shipping time volatility

feature lower imports, a larger number of foreign suppliers, and a lower concentration of

expenditure across suppliers, which indicates that firms actively diversify this source of risk.

To rationalize this evidence, we introduce risky delivery times into a standard quantitative

model of firm-level importing. We show that a model where firms maximize expected profits

cannot account for the negative relationship between imports and shipping time risk we

document in the data. In contrast, when firms are risk averse, the model can rationalize

our empirical findings. To match the data, the model implies that U.S. importers have a

moderate degree of risk aversion. An important caveat of our current approach is that we

take the matching between importers and suppliers as exogenously given. An avenue for

future research is to improve our understanding of this matching process, and evaluate its

implications for the aggregate economy.
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A Appendix: Data

In this section, we describe the steps taken to clean the LFTTD data. First, we drop all

transactions with an invalid date, zero or negative transaction value, missing vessel name, and

cases with a missing importer and exporter ID, as well as transactions that are likely to be

incorrectly recorded as indicated by a blooper ID. Second, we drop warehousing transactions

and observations where the foreign exporter is recorded as being in the U.S. Third, we use

the concordance by Pierce and Schott (2012) to generate time consistent 10-digit Harmonized

System (HS10) codes, and calculate prices as unit values by dividing the value of shipment

by the quantity shipped. Fourth, we translate the nominal shipment values into real values

using the U.S. GDP deflator.

Since the manufacturer ID (MID) differs across establishments of the same firm in different

locations and since logistics are likely arranged at the firm-level, we replace the MID with a

shortened identifier that contains only the country ISO code and the name portion of the

ID, as described in the main text. External validation of the ability of the MIDs to identify

foreign firms is provided in Kamal et al. (2015). They compare the number of MIDs in the

Census data to the number of foreign exporters for 43 countries from the World Bank’s

Exporter Dynamics Database (EDD), which is based on foreign national government statistics

and private company data. Kamal et al. (2015) show that the number of MIDs in the Census

data matches well with the number of sellers in the EDD when the street address or the city

component are omitted. Kamal and Monarch (2018) provide further support that the MID is

a good identifier of foreign exporters as follows. First, errors due to manual data entry are

likely low because most firms use customs brokers for their official customs invoice and nearly

all entries are filed electronically using specialized customs software. Second, the MID is used

for regulatory purposes, such as enforcing anti-dumping measures or tracking compliance with

U.S. restrictions for textile shipments, which provide an incentive for the U.S. government

to ensure that the MIDs are correct. Third, as an external validation, Kamal and Monarch

(2018) assess whether the MID can distinguish between distinct exporters using Chinese data:

they construct artificial MIDs from exporter names and addresses in the Chinese Annual

Survey of Industrial Firms, and show that they tend to be unique firm identifiers within

sectors.

The LFTTD also contains an indicator for whether a transaction is conducted between

related parties. Based on Section 402(e) of the Tariff Act of 1930, a related-party trade

is an import transaction between parties with ‘‘any person directly or indirectly, owning,

controlling, or holding power to vote, [at least] 6 percent of the outstanding voting stock

or shares of any organization.’’ To correct for missing or incorrect related-party flags, we
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Table 10: Weather conditions: summary statistics

Mean Sd p5 p50 p95
Significant wave height (m) 1.9 1.3 0.4 1.7 4.5
Significant wave direction (degrees) 187 90 44 197 318

Notes: The table shows summary statistics for the weather variables across all days and route segments in
the data.

classify an importer-exporter pair as related if it had a related-party flag for any transaction

in the given year.

Table 10 provides some summary statistics on the mean and standard deviation of the

significant wave height and its (absolute) direction across all days and route segments in the

data. We find that there is substantial variation across both height and direction variable.

For example, the mean wave height is 1.6 meters, but at the 95th percentile the wave height

is 4.2 meters.
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Table 11: Shipping Times by Mode of Transportation

(1) (2) (3) (4) (5) (6) (7) (8)
Avg. Std. P5 P25 P50 P75 P95 Total Value
Time Time ($Bill.)

Vessel 16.38 23.54 3.49 10.00 13.46 20.48 33.32 4,250

Train 4.42 6.256 0.00 0.00 0.00 8.48 16.86 1,450

Truck 0.05 0.36 0.00 0.00 0.00 0.00 0.00 2,210

Airplane 0.49 0.89 0.00 0.00 0.00 1.00 2.298 1,610

Other 11.94 74.70 0.00 0.00 0.00 2.47 24.18 1,020
Source: LFTTD. Table summarizes the distribution of shipping time and value across different regions and
modes of transportation. Values are reported in billions of 2009 dollars.

Table 12: Shipping Times by Region

(1) (2) (3)
Avg. Std. Total Value
Time Time ($Bill.)

Canada 8.015 25.95 67

Latin America 5.014 25.91 257

South America 19.08 29.6 254

Europe 15.29 20.72 1,160

Asia 17.32 23.7 2,330

Oceania 26.75 25.2 53

Africa 27.37 26.89 113

Other 16.66 21.38 20

Source: LFTTD. Table summarizes the distribution of shipping time and value across different regions and
modes of transportation. Values are reported in billions of 2009 dollars.

B Appendix: Additional Results

Table 11 reports the percentiles of the distribution of shipping times for different modes of

transportation. The table clearly shows how vessel-borne shipments are substantially slower

and volatile than other types of transportation.

Table 12 shows average shipping times and their standard deviation for vessel-based

shipments by region of origin. Shipments from Latin America and Canada tend to arrive

fastest in the U.S., while shipments from Oceania and Africa take the longest. There is a

large standard deviation of shipping times for all source countries.

Table 13 reports the results of a regression of residualized shipping times on weather

conditions, identified with wave height and wind direction. The table shows a negative and

significant effect of these variables on shipping times. This constitutes the first stage of our
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Table 13: Effect of Weather on Shipping Times

Dep. Var: t̂sxhrtvfa
Wave Heights −0.0330∗∗∗

(0.0006)
Directions −0.0002∗∗∗

(0.0000)
Wave Heights× 0.00003∗∗∗

Directions (0.0000)
Route FE Y
Observations 5,774,000

Table 14: Effect of Extreme Delays on Firms’ Outcomes, II

(1) (2) (3)
IV

Dependent Variable: Sales Profits Employees
Frac Delayed (Alt) −4.024∗ −1.579 −0.396

(2.062) (1.359) (0.431)
Frac Delayed (NoAlt) −8.317∗∗ −5.755∗ −1.271∗∗

(3.403) (3.344) (0.623)
Importer FE Y Y Y
Year FE Y Y Y
F-Stat (Alt) 8.359 8.359 8.359
F-Stat (No-Alt) 3.53 3.53 3.53
Observations 142, 000 142, 000 142, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the country level.

main regressions.

Table 14 regresses firm-level economic outcomes on the fraction of inputs that were

delayed, but, differently from the baseline table, it differentiates between U.S. importers

that were sourcing a given product from only one supplier and importers which instead had

alternative back-up suppliers. We can see that the latter type of firms perform significantly

better than the former, highlighting the benefits of diversifying inputs sourcing across multiple

suppliers.
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B.1 Robustness

In this section, we show that our results on the impact of shipping risk on importers’ behavior

are robust to a variety of alternative specifications. First, in Table 15, we run our baseline

specification without firm fixed effects and find similar results as before. An increase in the

standard deviation of shipping times has a positive and significant effect on both the number

of suppliers and routes. Similarly, we find that the relationship between shipping risk and

importers’ concentration of suppliers remains significant, and the effect on value imported

even strengthens.

Table 15: Shipping Time Risk and Import Demand with Different Fixed Effects

(1) (2) (3) (4) (5) (6)
Dep. Var.: Number of Number of HHI over HHI over Value per Value Imported

Suppliers Routes Suppliers Supplier-Routes Supplier-Year per Year
Std Time 0.063∗∗∗ 0.101∗∗∗ −0.038∗∗∗ −0.055∗∗∗ −0.188∗∗∗ −0.125∗∗∗

(0.011) (0.011) (0.003) (0.002) (0.012) (0.008)
Importer FE − − − − − −
Product FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Observations 328, 000 328, 000 328, 000 328, 000 328, 000 328, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level.

Next, in Table 16 we do not include the unit value in the regression and find results

consistent with our baseline.

Table 16: Shipping Time Risk and Import Demand Excluding Price Controls

(1) (2) (3) (4) (5) (6)
Dep. Var.: Number of Number of HHI over HHI over Value per Value Imported

Suppliers Routes Suppliers Supplier-Routes Supplier-Year per Year
Std Time 0.055∗∗∗ 0.097∗∗∗ −0.037∗∗∗ −0.054∗∗∗ −0.153∗∗∗ −0.098∗∗∗

(0.004) (0.006) (0.002) (0.001) (0.006) (0.007)
Importer FE Y Y Y Y Y Y
Product FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Controls Ex. Price Ex. Price Ex. Price Ex. Price Ex. Price Ex. Price
Observations 328, 000 328, 000 328, 000 328, 000 328, 000 328, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level.

Table 17 includes firms with only one supplier. Here, we find that the relationship

between shipping risk and the number of suppliers and routes remains significantly positive,

but decreases slightly in magnitude. Compared to the baseline, the inclusion of firms with

one supplier weakens the association between shipping risk and HHI over suppliers slightly.

Value per supplier and total value imported remains significantly negatively correlated with

shipping risk.

In Table 18 we include an additional control for the inventory-sales ratio and find that

the relationship between shipping risk and the number of suppliers and routes strengthens.
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Table 17: Shipping Time Risk and Import Demand Including Firms with One Supplier

(1) (2) (3) (4) (5) (6)
Dep. Var.: Number of Number of HHI over HHI over Value per Value Imported

Suppliers Routes Suppliers Supplier-Routes Supplier-Year per Year
Std Time 0.047∗∗∗ 0.090∗∗∗ −0.031∗∗∗ −0.054∗∗∗ −0.147∗∗∗ −0.100∗∗∗

(0.004) (0.006) (0.002) (0.002) (0.006) (0.007)
Importer FE Y Y Y Y Y Y
Product FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Observations 502, 000 502, 000 502, 000 502, 000 502, 000 502, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level.

However, conditional on shipping risk, a higher inventory-sales ratio decreases the number

of routes used. Supplier concentration and value imported remain significantly negatively

correlated with shipping risk.

Table 18: Shipping Time Risk and Import Demand with Inventory-Sales Ratio

(1) (2) (3) (4) (5) (6)
Dep. Var.: Number of Number of HHI over HHI over Value per Value Imported

Suppliers Routes Suppliers Supplier-Routes Supplier-Year per Year
Std Time 0.061∗∗∗ 0.114∗∗∗ −0.039∗∗∗ −0.059∗∗∗ −0.157∗∗∗ −0.095∗∗∗

(0.005) (0.007) (0.002) (0.002) (0.008) (0.008)
Inventory- −0.018 −0.036∗∗ 0.000 0.005 −0.063 −0.082
Sales Ratio (0.013) (0.015) (0.003) (0.003) (0.048) (0.060)
Importer FE Y Y Y Y Y Y
Product FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Observations 237, 000 237, 000 237, 000 237, 000 237, 000 237, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level.

In Table 19, we also find that our results hold when we use the risk of the main supplier

as our risk measure, rather than a weighted average across all suppliers. A one log point

increase in our measure of shipping risk increases the number of suppliers used by 4 percent

and the number of routes by 6 percent. In columns (3) and (4), we see that having one

percent higher shipping risk is associated with a 4 percent lower HHI over suppliers and

supplier-route combinations. Finally, columns (5) and (6) show that increasing shipping risk

by one percent leads to lower imports.

Lastly, Table 20 documents that higher shipping risk is associated with a higher likelihood

of using air shipments, suggesting that firms use air transportation to hedge the ocean

shipping risk.
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Table 19: Shipping Time Risk and Import Demand with Main Supplier

(1) (2) (3) (4) (5) (6)
Dep. Var.: Number of Number of HHI over HHI over Value per Value Imported

Suppliers Routes Suppliers Supplier-Routes Supplier-Year per Year
Std Time 0.043∗∗∗ 0.059∗∗∗ −0.039∗∗∗ −0.039∗∗∗ −0.153∗∗∗ −0.111∗∗∗

(0.004) (0.006) (0.002) (0.003) (0.007) (0.006)
Importer FE − − − − − −
Product FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Observations 237, 000 237, 000 237, 000 237, 000 237, 000 237, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level.

Table 20: Shipping Time Risk and Import Demand with Air Shipments

Dep. Var.: Air Shipments
Std Time 0.009∗∗∗

(0.001)
Importer FE Y
Product FE Y
Year FE Y
Controls Y
Observations 328, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level.
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