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Abstract

We study the effect of risk on how firms organize their supply chains. We use transaction-

level data on U.S. manufacturing imports to construct a novel measure of input sourcing

risk based on the historical volatility of ocean shipping times. Our measure isolates the

unexpected component of shipping times that is induced by weather conditions along

more than 331,000 maritime routes. We first document that unexpected shipping delays

significantly reduce importers’ sales, profits, and employment. We then show that firms

actively diversify weather risk by using more routes and foreign suppliers, although their

import values decline. To rationalize these findings, we introduce shipping time risk

into a general equilibrium model of importing with firm heterogeneity. Our quantitative

analysis predicts substantial costs for the U.S. economy associated with supply chain

risk.

*Blaum: jblaum@bu.edu. Esposito: fesposito4@fordham.edu. Heise: sebastian.heise@ny.frb.org. We thank our discussants

Davin Chor, Simona Giglioli and Shafaat Yar Khan, as well as Laura Alfaro, David Atkin, Teresa Fort, Matthew Gudgeon, Fadi

Hassan, Georg Schaur, Peter Schott and participants at numerous seminars and conferences for their valuable comments. The

views and opinions expressed in this work do not necessarily represent the views of the Federal Reserve Bank of New York or the

Census Bureau. The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance

protection of the confidential source data used to produce this product. This research was performed at a Federal Statistical

Research Data Center under FSRDC Project Number 1883 (CBDRB-FY25-P1883-R12596 and CBDRB-FY26-P1883-R12776).



1 Introduction

The past decades have seen a dramatic transformation in the international organization

of production, with intermediate inputs accounting for over two-thirds of global trade and

complex global value chains spanning multiple countries (Johnson and Noguera (2012), Antràs

and Chor (2022)). For many firms, the timely delivery of inputs is a crucial element of

their production process (Hummels and Schaur (2013)). However, the increased reliance on

imported intermediates has exposed firms to a host of supply chain risks that can adversely

impact the timeliness of their inputs. Salient recent examples include the increased frequency

of extreme weather events associated with climate change or the strain on port infrastructure

that followed the Covid pandemic (e.g., Brancaccio et al. (2024)). How do these and other

supply chain risks impact firms’ import behavior? Do firms adapt their supply chains to

hedge against the delay risk stemming from these shocks? Answering these questions is

challenging because of the inherent difficulty in developing credible measures of firm-level

risk.

We shed light on these questions by focusing on a specific but important source of risk:

weather. We start by establishing that weather conditions have a significant effect on the

ocean shipping times of U.S. manufacturing imports. To do so, we rely on transaction-level

import data on ocean shipments provided by the U.S. Census Bureau as well as detailed

data on oceanic wave conditions along more than 331,000 maritime routes. We exploit this

relationship to measure the component of shipping times that is induced by weather, which

we interpret as unexpected by U.S. importers given the unpredictability of high frequency

ocean conditions.

Armed with this measure, we establish two key empirical results. We first show that

unexpected shipping delays induced by weather shocks have large and disruptive effects

on U.S. importers’ production levels and profit margins. We then build a measure of risk

based on the volatility of the weather-induced shipping times. As Figure 1 shows, the

standard deviation of wave height has increased in many locations over the past decade.

Our second finding is that firms systematically respond to this type of weather risk along

different margins of adjustment. More exposed firms choose to rely on more routes and

foreign suppliers, and lower both their imports and the concentration of expenditure across

routes and suppliers. We next incorporate risky shipping times into a general equilibrium

model of firm-level importing, and calibrate the model to match salient features of the data.

We use our framework to quantify the impact of two scenarios of heightened risk: climate

change and port congestion. Overall, we find that these shocks trigger an important risk

diversification response by importers, but nevertheless reduce U.S. real income.
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Figure 1: Change in Standard Deviation of Wave Height, 2011-2023

Source: WaveWatch III Global Wave Model, University of Hawaii. Notes: We compute the standard deviation of average daily

wave height across all days of each year at each coordinate in the oceans and then average across years in 2011-2013 and in

2021-2023. The figure shows the percentage change at each grid point between these two periods.

The cornerstone of our analysis is the U.S. Census Bureau’s Longitudinal Firm Trade

Transactions Database (LFTTD), which provides transaction-level data recording the identity

of the U.S. importer and its foreign supplier, as well as information about the product, quantity,

and value transacted for the universe of U.S. imports. Importantly, the data record the

delivery time between the foreign port of exit and the U.S. port of entry and, for ocean

shipments, the vessel identity. Since the customs data do not contain details on each vessel’s

journey across the ocean, we develop an algorithm that uses the vessel name, foreign port

stops, and U.S. port of entry to determine the intermediate stops each vessel made on its way

to the U.S. We then construct the shipment route by finding the shortest maritime route

for each trip segment of the vessel’s journey using data from Eurostat’s SeaRoute program.1

Finally, we combine this data with information on the oceanic wave conditions along each

shipment’s route, which we measure using hourly data on wave height and wave direction at

the 0.5 degree level from the National Oceanic and Atmospheric Administration (NOAA) for

the years 2011-2019.

A central feature of our analysis is the measurement of the shipping times that are

unexpected by importers. To this end, we extract the components of shipping times that are

induced by weather conditions—specifically, the realized wave height and direction observed

1Ganapati et al. (2024) show that vessels on average follow the optimal maritime routes very closely.
Using AIS tracking data, we confirm that the major routes we construct are close to the actual routes followed
by vessels.
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along the route of each shipment. We also use a rich set of fixed effects and controls to remove

other predictable components that might influence how weather conditions affect shipping

time, such as the route, the vessel, the month, and the shipping charges. To interpret the

variation in the weather-induced shipping times as unexpected, our identifying assumption

is that the realized wave conditions along the entire maritime route are not anticipated by

the importers when they place their orders, beyond seasonal patterns that are picked up by

route-month fixed effects. We view this assumption as plausibly satisfied in the data. On

the one hand, most maritime shipments to the U.S. involve multi-week ocean crossings, and

import orders are typically placed many weeks before production is finalized and goods are

shipped (see Deloitte (2024)). On the other hand, weather forecasts are reasonably accurate

up to 7 days into the future, and predict only general patterns beyond 2 weeks—with ocean

wave height being particularly hard to predict given the chaotic nature of ocean dynamics

(Alley et al. (2019), Zhang et al. (2022), and Mishra et al. (2022)).

We use our measure to first analyze the effects of shipping delays induced by weather

shocks on firm performance. We identify for each year the shipments that were extremely

delayed, which we define as having a weather-induced delivery time greater than the 95th

percentile of its distribution for a given route. We estimate panel regressions for the years

2011-2019 and document that U.S. importers with a higher share of delayed inputs in total

costs experienced significant declines in sales, profits and employment. A one standard

deviation increase in the share of input costs that are weather-delayed reduces firms’ sales by

5.3%, profits by 3.5% and employment by 0.9% in the same year. These large negative effects

highlight the substantial impact of supply chain disruptions on firms’ production and suggest

that firms are typically unable to fully hedge their supply chain risk through insurance or

financial instruments.

We next study whether U.S. importers adjust their sourcing strategy and import demand

ex-ante to reduce the potential impact of weather shocks. To this end, we build a measure of

risk based on the volatility of weather-induced shipping times. In particular, we measure

the riskiness of each foreign supplier-route-product combination as the standard deviation

of the weather-induced shipping times over 3-year rolling windows. We construct a shift-

share measure of exposure to risk for each importer as a weighted average of the risk of

its suppliers and routes over the previous 3 years, using pre-determined import shares as

weights. We then estimate panel regressions of firms’ sourcing behavior on risk exposure

at the importer-product-year level and include a rich set of fixed effects and controls. Our

results indicate that U.S. importers diversify weather-induced risk along the extensive and

intensive margins. Going from the 25th to the 75th percentile of the shipping risk distribution

increases the number of routes and the number of foreign suppliers used by 9.0% and 5.9%,
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respectively. Moreover, it reduces the total value imported by 4.3%. Thus, importers with

ex-ante riskier supply chains spread their input expenditures among more routes and foreign

suppliers, and import less overall. Taken together, these results highlight the detrimental

impact of supply chain uncertainty on international trade.

To rationalize these findings, we incorporate shipping risk into a standard model of

importing with firm heterogeneity, along the lines of Blaum et al. (2018), Gopinath and

Neiman (2014), and Halpern et al. (2015). Firms can source their inputs domestically or from

foreign suppliers. We follow Hummels and Schaur (2013) in their treatment of timeliness by

assuming that input qualities are reduced when inputs take longer to arrive, for example due

to spoilage, absence of key inputs, etc. The key departure from the literature is that firms

are uncertain about shipping times when placing input orders. While firms are risk-neutral,

the presence of market power with elastic demand and the imperfect substitutability between

inputs introduce curvature in revenues, making expected revenues fall with more volatile

input qualities. Firms can diversify their shipping time risk by sourcing from multiple foreign

suppliers, or equivalently by using multiple routes, although this strategy is limited by

per-supplier fixed costs. We provide conditions under which firms increase their number of

foreign suppliers and reduce their import values after a mean-preserving spread to supplier

qualities.

We consider a calibrated version of the model to assess whether the theory can come

to terms with the empirical evidence. Firms are heterogeneous both in their productivity

and in the shipping time risk they face. The calibration targets our estimate of the effect

of shipping time risk on the extensive margin of importing to capture the role of risk, and

requires the model to match the negative association between sales and average shipping

times observed in the data to discipline the role of supplier timeliness. To quantify the

aggregate effects of risk, we also target the joint distribution of firm sales and risk observed

in the data and, in particular, the fact that larger importers are typically matched with safer

foreign suppliers. The calibrated model replicates well the key moments of shipping time risk

and import demand. We can therefore use the model as a laboratory to evaluate the impacts

of any scenario involving changes in shipping time risk.

We assess the impact of two risk-related scenarios that have recently received significant

attention, namely, climate change and port congestion. The volatility of ocean wave height

has increased on average by 0.34% per year between 2011-2023, consistent with work in

oceanography suggesting an increasing likelihood of extreme wave heights (Young et al.

(2011)). We evaluate the effects of an increase in the volatility of ocean wave heights that

continues along this trend over the next 50 years in our model. In a second exercise, we
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consider the greater variability of waiting times at ports associated with the rise in port

congestion that took place in the post Covid period of 2021-2022. In both exercises, we find

a strong risk diversification response along the extensive margin together with a substantial

fall in imports, as firms reduce their risk exposure by substituting towards domestic inputs.

This shift increases production costs and prices, reducing U.S. real income by 0.5-1.1%.

Related Literature. Our paper contributes to several strands of the literature. First, it

relates to work that investigates the importance of timeliness in international trade, both in

theory and in the data (Evans and Harrigan (2005) and Hummels and Schaur (2013)). While

these seminal papers focus on the role of the level of shipping times, we study the effect of

the variance of shipping times, controlling for their mean. Our empirical results show that

uncertainty around shipping times has an additional negative effect on import demand. We

propose a theory of the firm that incorporates this mechanism in a way that is both tractable

and amenable to quantitative analysis.

Second, we contribute to a broader literature that analyzes the impact of uncertainty

on firms. Most of the international trade literature on this topic has focused on exports

and FDI (e.g., Ramondo et al. (2013), Fillat and Garetto (2015), Esposito (2022), Baley

et al. (2020), and De Sousa et al. (2020)). In contrast, we analyze risk on the input side

and how it affects firms’ sourcing decisions. Only a few papers have studied the effects of

sourcing uncertainty on international trade (e.g., Gervais (2018), Grossman et al. (2023), and

Handley et al. (2024)). Our contribution to this literature is to develop a novel and plausibly

exogenous measure of firm-level shipping time risk using weather shocks, which we use to

study the causal impact of risk on importers’ performance in the United States. We combine

weather data with comprehensive firm-level administrative data and show that importers

actively adjust the intensive and extensive margins of importing in response to weather risk.2

Complementary to our work are Balboni et al. (2023) and Castro-Vincenzi et al. (2024), who

study how firms diversify their sourcing locations in Pakistan and India, respectively. In

contrast to our focus on maritime shipping risk and international trade, these works focus on

flood risk and on domestic trade.

Third, we contribute to work that studies the effects of supply chain disruptions on firms

(Carvalho et al. (2021), Barrot and Sauvagnat (2016), Boehm et al. (2019), Khanna et al.

(2022), Alessandria et al. (2023), Lafrogne-Joussier et al. (2023)).3 Relative to this literature,

2The diversification mechanism we highlight is complementary to firms’ use of inventories, documented
by Alessandria et al. (2023) and Carreras-Valle (2024).

3Also related is work that studies the effects of climate shocks on firms, e.g., Pankratz and Schiller
(2024) and Dunbar et al. (2023). More broadly, we contribute to a large literature that studies firm-to-firm

5



we provide a new way to identify granular supply shocks using readily available weather

data, rather than large, aggregate shocks—such as the Japanese earthquake or the Covid

lockdowns. Our measure therefore lends itself to a wide range of applications that require

exogenous shocks to firms.

Finally, we contribute to the literature that incorporates input trade into quantitative

models with firm heterogeneity—e.g., Gopinath and Neiman (2014), Halpern et al. (2015),

Antràs et al. (2017), and Blaum et al. (2018). Existing models of importing typically abstract

from supplier risk considerations. Our contribution is to extend a sourcing model to allow for

risk and to quantify its impact in general equilibrium. Our calibrated model can serve as a

laboratory to estimate the impact of any type of sourcing risk on U.S. importers.

The remainder of the paper proceeds as follows. Section 2 describes our data, measurement

of shipping times, and the construction of the weather shocks, while Section 3 discusses our

empirical results. Section 4 presents the model, which we calibrate to perform our quantitative

analysis in Section 5. Section 6 concludes.

2 Measuring Shipping Times, Routes and Weather Conditions

In this section, we describe how we measure shipping times, routes, and weather conditions

for U.S.-bound import transactions and how we construct our measure of weather-induced

shipping times. Using detailed U.S. Census transaction-level import data, we first develop a

novel methodology to infer the shipping routes followed by vessel-borne shipments headed to

the U.S. between 2011 and 2019, yielding more than 331,000 distinct routes. We then use

highly granular data on ocean wave conditions to measure the realized weather conditions

along each vessel’s journey. These will form the basis of our measure of shipping time risk,

which we use in the empirical analysis in Section 3.

2.1 U.S. Census Data

Our empirical analysis relies on the Longitudinal Firm Trade Transactions Database (LFTTD)

provided by the U.S. Census Bureau. This dataset comprises the entire universe of interna-

tional trade transactions made by U.S. firms. We focus on all the import transactions during

the period 2011-2019. Each transaction is associated with an identifier of the U.S. importer,

the HS-10 product code traded, the mode of transportation (vessel, air, etc.), as well as the

relationships, see e.g., Dhyne et al. (2021), Bernard et al. (2019), Esposito and Hassan (2023), and Heise
(2024). This literature does not typically focus on uncertainty.
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value, weight, and quantity shipped. The data also report an identifier of the foreign seller

and an indicator of whether the transaction is between related parties.4 We calculate prices

as the value of the shipment divided by the quantity shipped and keep both related party

and arm’s-length transactions.

The LFTTD contains several additional variables that are critical to construct our measure

of risk. First, each customs record reports the export and the import dates (after customs

are cleared), which allows us to construct shipping times. Second, for seaborne imports, we

also observe the foreign port of departure, the U.S. port of arrival, and the vessel name. We

use this information to construct shipping routes, as explained below. For non-seaborne

imports we only know the shipping company’s name instead of the vessel name, and we only

know the country of departure instead of the departure port. Since in some cases an import

transaction spans multiple customs records, we collapse the data to the supplier (x) - product

(h) - foreign country (c) - origin port (pe) - destination port (pi) - foreign export date (te) -

import date (ti) - vessel (v) - importer (f) - related party status (a) level.5 We call such an

observation a transaction. We describe in detail the data cleaning process in Appendix A.1.

We merge the LFTTD data with the Longitudinal Business Database (LBD), which

reports the annual employment and the main industry of each U.S. firm. Given our focus on

supply chains, we restrict our analysis to firms that operate in the manufacturing sector, as

their imports are most likely intermediates into production. We also obtain firms’ total sales,

cost of materials, and employee compensation from the Census of Manufactures (CMF) in

census years (2012, 2017) and from the Annual Survey of Manufacturers (ASM) for non-census

years. We construct profits as sales minus cost of materials and payroll.

Table 1 reports summary statistics of our dataset. The first column considers all man-

ufacturing imports over the period 2011-2019. The second column includes only seaborne

transactions, which we use to construct our measure of shipping risk. Our dataset covers

about 5.5 trillion dollars of imports (in 2009 dollars), of which about 40 percent are seaborne.

For these vessel-based transactions, we observe 250 U.S. ports, 1,600 foreign ports, and

145,000 unique vessels—crucial pieces of information for constructing shipping routes, which

we turn to next.

4The foreign seller is identified by a Manufacturer ID (MID), which is an alphanumeric code that combines
information on the seller’s country, name, street address, and city. We follow Kamal et al. (2015) and
Kamal and Monarch (2018) in combining sellers with the same street address and city into one. We use the
concordance by Pierce and Schott (2012) to transform the HS-10 codes into time-consistent product codes.
Note that we do not observe domestic suppliers, only foreign ones. See Appendix A.1 for more details.

5For non-vessel transactions, the origin port is replaced with the origin country and the vessel is blank.
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Table 1: U.S. Import Transaction Summary Statistics

All Seaborne
Total Imports 5,470 2,090

Unique Importers (f) 114,000 55,000

Unique Exporters (x) 485,000 225,000

Number of Transactions (millions) 58.6 18.4

Number of U.S. Ports of Entry (pi) 250

Number of Foreign Ports (pe) 1,600

Number of Origin-Destination Port Pairs 28,000

Unique Vessels (v) 145,000

Source: LFTTD and authors’ calculations. The table summarizes U.S. imports from 2011 to 2019. Values in the first row are

reported in billions of 2009 dollars.

2.2 Construction of Shipping Times and Routes

Shipping Times For all shipments, irrespective of their mode of transportation, we calculate

the shipping time as the difference, in days, between the import date in the U.S. and the

export date from the foreign country. We report statistics of the distribution of shipping

times in Table 2. Vessel shipments take on average 19 days to arrive to the U.S., which is

substantially more than for all other modes of transportation. Air and truck shipments arrive

in the U.S. on average within the same day, while train shipments arrive on average in 5

days. Importantly, there is a high degree of dispersion in vessel shipping times.6

Routes and Journeys For seaborne shipments, we develop an algorithm to construct ocean

shipping routes and vessels’ journeys between ports from the information on the port of entry

and port of origin. We assign each transaction in the customs data to a trip, defined as a

journey of a vessel that begins with the loading of cargo at a foreign port and ends, possibly

after some intermediate stops, with the unloading of cargo at a U.S. port. As a starting

point, we sort all transactions involving a given vessel by their foreign departure date. We

then take all the vessel’s transactions and assign them to a single trip (‘‘Trip 1’’). Next,

we find the earliest arrival date of the vessel in the U.S. for this trip. If there exists any

transaction of the same vessel with an export departure date abroad that is later than this

earliest arrival date in the U.S., we assign these transactions to a new trip (‘‘Trip 2’’). We

continue splitting trips into sub-trips until no further splits are possible.7 We then use the

6Of course, predictable factors such as the origin country or the time of year affect vessel shipping times
to the U.S. We show additional statistics on shipping times and their determinants in Appendix A.2.

7In some instances the departure or arrival date may be misreported, for example because a vessel reports
a departure abroad at the same time as unloading cargo at a U.S. port. In Appendix A.1 we explain how we
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Table 2: Shipping Times by Mode of Transportation

Avg. Std. P5 P25 P50 P75 P95 Total Value
Time Time

Vessel 19.1 19.9 6.1 12.0 15.4 25.0 36.9 2,090

Train 5.4 7.3 0 0 0 10.5 20.9 745

Truck 0.1 0.5 0 0 0 0 0 1,140

Airplane 0.6 1.0 0 0 0 1.0 2.3 656

Source: LFTTD. The table summarizes the distribution of shipping time and value across different regions and modes of

transportation. Values are reported in billions of 2009 dollars.

dates of import and export to construct the sequence of ports visited by each shipment, e.g.

Le Havre - Birmingham - New York - Newport News. We refer to a leg of the trip between

two ports as route segment.

We determine the path taken by vessels across the ocean on any route segment using

Eurostat’s SeaRoute program. This program computes the shortest maritime paths using

the network of global shipping lanes and observed vessel movements from satellite data. We

obtain a single path for each route segment, which we assign to any vessel going through

it. We refer to the entire ordered set of route segments as a granular route, and call the

associated origin-destination port pair a route. Our sample includes around 14,000 route

segments, 20,500 routes, and 331,000 granular routes. We show that, for a selected sample,

these routes closely follow actual vessel movements reported by AIS data (Appendix A.3).8

The upper panel of Figure 2 illustrates the route segments in our data.

For shipments arriving by modes of transportation other than vessel, we observe only the

country of departure rather than the departure port. We therefore approximate the shipping

route as a foreign country of origin and a U.S. entry point (e.g., airport or border crossing)

pair, and end up with 13,500 distinct non-seaborne routes. Since we cannot compute the

weather conditions for these transactions, we will assume that their shipping risk is zero for

the empirical analysis in Section 3.

Our measures of shipping times and routes are the building blocks of our empirical

analysis. The key advantage of relying on the U.S. Census transaction-level data to obtain

these measures is its comprehensive nature and extreme detail, which allows for a systematic

analysis of the role of shipping risk in the U.S. economy. However, there are a number

of limitations due to the nature of the available data. First, we do not have information

identify such cases and how we refine our algorithm to redefine the trips.
8This evidence is consistent with Ganapati et al. (2024), who show that vessels typically follow the

minimum-distance routes fairly closely. In addition, two-thirds of world trade in manufacturing travels on
container ships, which typically follow fixed itineraries (i.e. the so-called ‘‘bus system’’, see Brancaccio et al.
(2020) and Heiland et al. (2025)), which are likely captured by Eurostat’s SeaRoute program.
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Figure 2: Weather Conditions and Routes

(a) Network of Route Segments

(b) Volatility of Wave Height

Notes: The upper panel shows the network of shipping routes constructed in our data. The bottom panel shows the standard

deviation of wave height across all days from 2011-2019 and some selected shipping routes.
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on the voyage from the manufacturer’s production facilities to the foreign port, nor on the

journey from the U.S. port of entry to the importer’s plant. Hence we do not capture the

risks associated with those parts of the trip. However, typically goods spend several weeks on

the vessel to the U.S., and thus this part of the journey is likely a large fraction of the total

travel time. Second, because the data report only the foreign ports where goods are loaded

onto a vessel bound for the U.S., we do not know whether goods are reloaded from one vessel

to another, i.e., ‘‘trans-shipped’’ (Ganapati et al., 2024). Thus, we only observe the journey

of the last vessel to the U.S., implying that we underestimate the overall shipping delay risk

faced by importers.

2.3 Construction of Weather Conditions

To obtain exogenous variation in shipping times we rely on information on oceanic weather

conditions, which we obtain from the WaveWatch III model maintained by the University

of Hawaii based on NOAA data. These data report the height and direction (in degrees) of

significant waves at hourly or three-hourly frequency for geo-locations at 0.5 degree distances

in the oceans from 2011 onward.9 There is an extensive literature showing that oceanic wind

conditions and waves affect navigation speed (e.g., Filtz et al. 2015 and Viellechner and

Spinler, 2020) and increase accident risk (Heij and Knapp, 2015).10 To reduce computational

requirements, we aggregate the hourly information to compute the daily average of significant

wave height and direction for each geo-location in the oceans. If information is unavailable

at a geo-location, we take a simple average of the weather in the surrounding grid points.11

We combine the weather information with the route segments for seaborne shipments

constructed earlier for each coordinate and day. Since the effect of waves on vessel speed

depends on the direction of travel, we compute for each route coordinate a ‘‘relative wave

direction’’. This variable is computed by taking the absolute difference between the direction

of the waves and the estimated direction of vessels at that point. We estimate the direction

of any vessel going through a route segment using the latitude and longitude of subsequent

coordinates of the segment’s path. A greater relative direction means that the waves are

less aligned with vessels’ likely course.12 For each route segment, we compute the average

9Significant waves are the waves that a trained observer would see when looking at the ocean. Significant
wave height is the average height of the highest third of the waves.

10Ocean currents are also important determinants of navigation speed, but they can be perfectly predicted,
and therefore are absorbed by the route-month fixed effects we use in our methodology.

11Note that while our dataset reports weather conditions for locations in the oceans, it does not include
information for interior bodies of water, such as the Great Lakes, the Mediterranean sea, and the Baltic Sea.

12For example, a wave direction of 75 degrees for a vessel traveling at direction 90 degrees corresponds to
a wave direction of abs(90− 75) = 15 degrees. When this absolute difference exceeds 180, we subtract 180
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weather (i.e., wave height and relative direction) for each day by averaging across all segment

coordinates.

In the final step, we merge the route segments and weather information with the trade

transaction data. For each day a vessel spends on a segment, we merge in the corresponding

segment-level average weather. We then take an average across the day-level weather

measures for each transaction. Our final dataset thus contains, for each transaction, an

average wave height and an average relative wave direction along the entire granular route.

To illustrate the source of exogenous variation, the blue and green shading in the bottom

panel of Figure 2 report the standard deviation of the average daily wave height for each

grid point in our data. The red lines indicate various shipping routes used by U.S. importers.

There are significant differences across locations. Routes across the Atlantic and Pacific have

higher wave height volatility than routes along the coast of South America. Importantly,

there is variation even across routes that are relatively close to each other. Vessels traversing

the Northern Atlantic Ocean on their way to the East Coast face a significantly higher

standard deviation of wave height than vessels that travel further South. We provide some

summary statistics on wave height in Appendix A.4.

2.4 Measuring Unexpected Shipping Times

A central goal of our methodology is to measure shipping delays, that is, instances where

goods arrive later than expected. However, we do not observe the shipping times expected by

the importers, only the realized ones. We therefore focus on the variation in shipping time

that is induced by plausibly unanticipated weather conditions. To this end, we regress the

shipping time on the weather conditions realized along a shipment’s maritime route, as well

as a rich set of fixed effects and observables that capture factors which are likely anticipated

by importers. We treat the predicted effects from the weather terms in this regression as the

weather-induced unexpected shipping times.

Our measurement of unexpected shipping times relies on the assumption that, at the time

of placing orders, importers do not fully anticipate the weather conditions along the entire

maritime route beyond the usual seasonal patterns, which are picked up by the route-month

fixed effects in the regression. We believe that this is a reasonable assumption as import

orders are placed typically many weeks before production finalizes and goods are shipped (see

Deloitte, 2024). Moreover, most shipments to the U.S. require multi-week ocean crossings

to get the minimum distance. For instance, if a vessel travels North and the waves go West, the relative
direction would be abs(0− 270)− 180 = 90 degrees.
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where weather conditions cannot be perfectly predicted, even by shipping companies relying

on sophisticated weather forecasting technology.13 Importers may also be uncertain about

the exact shipping date of their orders.

We next describe a simple statistical model that relates shipping time to realized weather

conditions along the route and other observables. We then estimate the model to extract the

weather component of shipping times.

A Statistical Model of Shipping Times and Weather Conditions. Consider a buyer f that

orders a shipment s of product h from seller x in time period t. The shipment arrives to the

U.S. via route r. The time it takes for the shipment to arrive in the U.S., Ts, is a stochastic

variable determined by:

ln(Ts) = αf + αh + αx + αrt + αν + αa + η ln (Cs) + ρ ln (Ws) + tweather,s + εs, (1)

where ν denotes the vessel used, a is an indicator for whether the importer and exporter are

related parties, Ws and Cs are the shipment’s weight and shipping charges (freight costs plus

insurance), respectively, and tweather,s is the component of the shipping time explained by

weather conditions affecting shipment s.

The α terms capture deterministic components of shipping times that might be known

to the buyer at the time of ordering. For instance, αh may capture that some products are

harder to ship or take longer to clear at customs, and αx may reflect the ability of a supplier

to arrange logistics with shipping companies. αrt captures route characteristics in a given

month-year t (e.g., April 2015), such as the average time it takes to unload a shipment and

clear customs in a port. Weather conditions that are anticipated at the time of placing import

orders are also captured by αrt.

Shipping times are also determined by stochastic weather conditions which are realized

after import orders are placed. Following the literature on ocean shipping, we represent

weather conditions with the height and relative direction of the significant waves a vessel

encounters on its route (Filtz et al., 2015):

tweather,s = β1Heights + β2Directions + β3Heights ·Directions, (2)

13Forecasts are reasonably accurate only until around 7 days into the future, and only general weather
trends can be predicted beyond 2 weeks (see Alley et al., 2019 and Ritchie, 2024). Zhang et al. (2022) and
Mishra et al. (2022) argue that despite advancements in machine learning and predictive modeling, accurately
forecasting ocean wave height remains a difficult problem due to the chaotic and non-linear nature of ocean
dynamics.
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where Heights is the average wave height along the shipment’s route in meters and Directions

is the average wave direction in degrees relative to the vessel’s direction of travel.

Lastly, the term εs includes any random shocks that affect Ts beyond the deterministic

components and the weather conditions.

Extracting the Weather Component of Shipping Times. We extract the component of

shipping times explained by stochastic weather conditions by regressing the shipping times

on the set of fixed effects and observables specified in expressions (1)-(2):

ln(Ts) =αf + αh + αx + αrt + αν + αa + η ln (Cs) + ρ ln (Ws) ,

+β1Heights + β2Directions + β3Heights ·Directions + εs. (3)

The values of Heights and Directions are unique to each vessel’s journey, reflecting the specific

weather conditions encountered by the vessel during the days it spent on its shipping route.

Since the regression includes route-month fixed effects, the β coefficients are estimated from

deviations from the average weather on the route in the given month, thus capturing weather

shocks. We measure the component of shipping times explained by unanticipated weather

conditions by

t̂weather,s = β̂1Heights + β̂2Directions + β̂3Heights ·Directions. (4)

Table 3 presents the regression coefficient estimates on the weather terms from specification

(3) (the other regressors are omitted for brevity). The weather condition variables are gradually

introduced, with the first column including only wave height, the second column adding

the relative wave direction, and the third column adding the interaction term. Across all

specifications, higher waves reduce shipping times. According to the estimates in the final

column, a one standard deviation increase in wave height (1.5m) reduces shipping time by

about 8 log-points. Shipping times are also reduced when waves are against the direction of

travel: waves that are opposite to the vessel’s direction of travel (180 degrees) reduce the

shipping time by 2 log points. While the small positive effect of wave height and direction on

vessel speed is possibly surprising, we find similar results when we run these regressions with

satellite data (Appendix A.3). These data do not rely on an imputation of routes and report

information on vessel speed and direction at exact vessel locations in the ocean, indicating

that our results are not driven by our imputation methodology. The results are also in line

with earlier findings that have shown a positive effect of wave height on speed (Filtz et al.,

2015), and could be consistent with vessels increasing cruising speed when passing through
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areas with bad weather.

Table 3: Effect of Weather on Shipping Times

Dep. Var: ln(Ts)

Wave Heights −0.051∗∗∗ −0.051∗∗∗ −0.054∗∗∗

(0.000) (0.000) (0.000)

Directions −0.007∗∗∗ −0.012∗∗∗

(0.000) (0.000)

Wave Heights× 0.004∗∗∗

Directions (0.000)

Fixed Effects Y Y Y
Controls Y Y Y
R-Squared 0.789 0.789 0.789
Observations 9,892,000 9,892,000 9,892,000

Notes: The table reports the coefficients on the weather terms from estimating specification (3). Number of observations has

been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure Guidelines. The variable wave height is expressed in

meters, while the relative direction is expressed in hundreds of degrees. Importer, HS10 product, exporter, route-time, vessel,

and related party fixed effects, as well as log charges and log weight, are included in the regression but not reported in the table

for brevity. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% level, respectively.

3 Empirical Analysis

Armed with our measure of unexpected shipping times at the transaction-level, t̂weather,s, we

investigate how U.S. importers cope with weather-induced shipping delays and the associated

shipping time risk. Our analysis revolves around two questions. First, what are the effects

of shipping delays on U.S. manufacturing importers’ performance? Second, do importers

adjust their sourcing strategy and import demand in response to shipping time risk? We

start by documenting that shipping delays, defined as extremely long shipping times induced

by weather conditions, have negative and significant consequences for importers’ performance.

We then build a measure of shipping time risk based on the weather-induced unexpected

shipping times, and establish that U.S. manufacturing importers adjust their sourcing strategy

and import demand in response to shipping time risk.

3.1 Shipping Delays and Importers’ Performance

We define a weather-induced delay as a case where a transaction’s weather-induced unexpected

shipping time, t̂weather,s, is above the 95th percentile of the shipping time distribution within

the corresponding product-route. For each importer, we then compute the share of these

weather-delayed inputs in total input costs in a year as:
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FracDelayedweatherft =

∑
sD

s,weather
ft · Imp Valuesft

Total Input Costsft
, (5)

where Ds,weather
ft is an indicator that shipment s to importer f was weather-delayed in year t,

Imp Valuesft is the import value of such shipment, and Total Input Costsft are defined as

labor plus materials costs, including domestically sourced inputs and imports by all modes of

transportation. In this way, FracDelayedweatherft measures the share of an importer’s input

expenditures that are subject to extremely long shipping times in a given year. We then

estimate the following panel regression for the years 2011-2019:

ln(Y o
ft) = α + β1FracDelayed

weather
ft + γf + δt + ϵft, (6)

where Y o
ft is either the sales, operating profits (sales minus materials and labor costs), or

number of employees, and γf and δt are firm and year fixed effects, respectively. Our

identifying assumption is that, conditional on firm fixed effects, the fraction of input costs

that is subject to extreme shipping delays due to weather is orthogonal to any unobservable

characteristics that may affect an importer’s post-delay performance. The construction of

weather shocks discussed in the previous section is designed to satisfy this assumption.

Table 4 reports the results, with standard errors clustered at the firm-level. Shipping

delays significantly disrupt production levels and profit margins. Increasing the fraction

of delayed shipments by one standard deviation (2.02 percentage points, which is almost

a seven-fold increase from the average fraction delayed, 0.30%) is associated with a drop

in sales of 5.3%, a fall in profits of 3.5%, and in employment of 0.9%. Therefore, extreme

unexpected delays have a large and significant impact on U.S. importers. Such large effects of

shipping delays are consistent with evidence that the shipping risk is borne primarily by the

buyer (see Herghelegiu and Monastyrenko, 2020 and Eurosender, 2023) and that insurance

for supply disruption events is limited and expensive (Heckmann, 2016).14

In Appendix B.1, we compute an alternative measure of weather shocks and re-run the

regressions. Instead of averaging over the weather conditions of the entire route, we predict

where on the route the vessel is on each day by assuming that vessels travel at constant

speed, and use local weather conditions around this estimated location to re-construct our

14Note that most importers are relatively small. Our estimates of the impacts of shipping delays on sales
are in line with the effects of other supply chain disruptions found in a recent literature. Carvalho et al.
(2021) estimate an elasticity of sales of -3.6% following a shock hitting a domestic supplier. Barrot and
Sauvagnat (2016) find that when one of their suppliers is hit by a major natural disaster, firms experience
an average drop of 2 to 3 percentage points in sales growth. Khanna et al. (2022) find that firms with one
standard deviation higher supplier risk (which they define as the exposure of suppliers to different lockdown
policies across India) decreased their output by up to 2.7% after the lockdowns.
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Table 4: Effect of Extreme Delays on Firms’ Outcomes

(1) (2) (3)
Dependent Variable (in logs): Sales Profits Employees
Frac Delayed −2.617∗∗∗ −1.728∗∗∗ −0.452∗∗∗

(0.303) (0.352) (0.163)

Importer FE Y Y Y
Year FE Y Y Y
R-Squared 0.97 0.90 0.98
Observations 78, 000 78, 000 78, 000

Notes: The table reports the coefficients on the fraction of imports delayed, FracDelayedft, from specification (6). Fixed

effects for the firm and the year are included. The number of observations has been rounded to the nearest 1000 as per U.S.

Census Bureau Disclosure Guidelines. Standard errors are clustered at the firm level. Mean of FracDelayedweatherft is 0.003

and standard deviation is 0.020. R2 is the overall fit inclusive of the fixed effects. ∗∗∗, ∗∗, and ∗ denote significance at the 1%,

5%, and 10% level, respectively.

measure of weather-induced shipping delays. While we find smaller effects of wave height

and wave direction on shipping times under this alternative specification than in Table 3,

the relationship between delays and firm outcomes is similar to our baseline in Table 4: a

one standard deviation increase in delayed shipments (2.04 percentage points) is associated

with a drop in sales of 5.4%, a decline in profits of 3.8%, and a fall in employment of 0.9%.

We also report, in Appendix B.1, the results of the regressions estimated using a broader

measure of shipping delays, which we construct as the residual from running equation (3)

without the weather terms. This measure captures all types of delays, including those

unrelated to weather, such as port congestion or strikes. However, it requires the stronger

identification assumption that these residuals do not include any determinants of shipping

times that are anticipated by importers. While this assumption is not as clearly satisfied as

for weather shocks, we find qualitatively similar, though larger effects than in the baseline:

a one standard deviation increase in the fraction of delayed shipments under the broader

measure (3.1 percentage points) is associated with a drop in sales of 8.3%, a fall in profits of

4.7%, and in the number of employees of 1.6%.

3.2 Shipping Time Risk and Import Demand

Having shown that shipping delays have large adverse impacts on U.S. importers, we now

investigate whether firms take actions to actively diversify this source of risk. To motivate

this analysis, we show in Table 5 that firms rely on multiple routes to source the same

HS-10 product within the same year. We include all modes of transportation to capture

diversification across modes. The average firm uses 2.3 routes per product-year across all

modes of transportation. The large standard deviation compared to the mean indicates that
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Table 5: Summary Statistics on Foreign Sourcing

Mean St. Dev. P50 P95
Number of Routes 2.32 4.64 1 6.78

Number of Suppliers 1.90 4.17 1 4.68

HHI across Routes 0.84 0.25 1 1

HHI across Suppliers 0.89 0.21 1 1

Source: LFTTD and authors’ calculations. Table reports the mean and standard deviation across importer-product-year tuples

in our 2011-2019 sample period. The Herfindahl-Hirschman index (HHI) across routes is defined by computing the share of each

route in import value at the importer-HS10 product-year level and taking the sum of squared shares. The HHI across suppliers

is computed analogously using the share of each supplier in import value at the importer-HS10 product-year level.

there is substantial heterogeneity across buyers. While the median importer uses only one

route for a given product, firms at the 95th percentile use nearly 7. Similar patterns arise

when looking at the number of foreign suppliers instead of routes. Additionally, import values

are highly concentrated among routes and suppliers, with substantial heterogeneity in the

degree of concentration across importers.

Is importers’ use of multiple routes and suppliers related to hedging against shipping-time

risk? To explore this question, we compute a measure of exposure to shipping time risk based

on the volatility of the weather-induced shipping times experienced by importers. We then

document how changes in exposure to such risk both across importers and over time affect

multi-route and supplier sourcing as well as other patterns of import demand.

Measuring Exposure To Risk. We start by computing the standard deviation of the weather-

induced shipping times, t̂weather,s, over three-year rolling windows for each supplier-product-

route-year (x, h, r, t) combination. We denote this standard deviation by ̂StdT imexhrt−3,t−1.

We assume that non-vessel transactions are riskless and set ̂StdT imexhrt−3,t−1 = 0 for such

(x, h, r, t) cells. Cells with fewer than 10 transactions are dropped. We aggregate this risk

measure at the importer-product-year level by taking a weighted average over the importer’s

suppliers and routes over the previous three years:

̂StdT imefht−3,t−1 ≡
∑
x,r

ωfxhr,t−3,t−1
̂StdT imexhrt−3,t−1, (7)

where the weights ωfxhr,t−3,t−1 are firm f ’s import shares of product h from each supplier-route

over the years t− 3 to t− 1. Our measure is akin to a shift-share exposure measure, as in

Bartik (1991), where the supplier-route-product level standard deviations are the ‘‘shift’’,

and the import shares are the pre-determined ‘‘shares.’’
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Econometric Specification. Armed with our measure of risk, we estimate the following

panel specification:

ln(Yfht) = α + β1 ln( ̂StdT imefht−3,t−1) + β2Xfht + γf + µh + δt + ϵfht, (8)

where Yfht is an import demand outcome of importer f in year t for product h. This regression

analyzes whether the risk faced by the importer in the previous three years (t− 3 to t− 1)

affects its sourcing patterns in the current year t. Our shift-share measure of risk helps

alleviate concerns of reverse causality, that is, the endogeneity of the risk measure through the

importers’ choice of routes and suppliers. Given the well-known stickiness in buyer-supplier

relationships (e.g., Martin et al. (2023), Heise (2024)), our panel specification with firm fixed

effects exploits variation over time in importers’ exposure to risk driven by within-route

changes in the volatility of weather shocks.

We consider the following dimensions of import sourcing as dependent variable: (i) the

number of routes, (ii) the number of foreign suppliers, (iii) the concentration of value imported

across routes as measured by the Herfindhal–Hirschman index (HHI), (iv) the HHI of imports

across suppliers, and (v) the total value imported. Xfht is a vector of controls, and γf , µh

and δt are importer, product, and year fixed effects, respectively. In our baseline specification,

we omit firm-product pairs with only one foreign supplier in year t since the purchase volume

may be too small to make diversification viable or the product may be too specialized. We

show below that our results are robust to including such firms.

Our controls Xfht include the importer’s unexpected shipping times, t̂weather,s, averaged

over the previous three years using the same weights as in (7). This variable accounts for the

direct negative effect of shipping times on import demand, as documented in Hummels and

Schaur (2013). The average shipping time also controls for the fact that suppliers located in

countries further away may mechanically have more volatile shipping times purely because

they have more scope for delays. We also include the average unit value paid by the importer

for product h in year t. This variable controls for the fact that riskier suppliers may sell

cheaper inputs, confounding the relationship between risk an import demand we aim to

estimate. Finally, we control for importers’ size (proxied by the total imports of product h

over the previous 3 years) and for suppliers’ size (proxied by the total exports of the product

over the previous 3 years), since larger importers or exporters have more shipments, which

could mechanically increase their risk.15

15For example, exporters shipping greater volumes in a given period may need to send more shipments
with more vessels, which may introduce a predictable correlation between risk and exporter size. This effect
would not be captured by the exporter fixed effects in specification (3). The reasoning is similar for importers.
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Table 6: Shipping Time Risk and Import Demand

(1) (2) (3) (4) (5)
Dep. Var.: Number of Number of HHI over HHI over Value

Routes Suppliers Routes Suppliers Imported
Std Time 0.177∗∗∗ 0.116∗∗∗ −0.089∗∗∗ −0.072∗∗∗ −0.085∗∗∗

(0.009) (0.008) (0.003) (0.003) (0.011)

Importer FE Y Y Y Y Y
Product FE Y Y Y Y Y
Year FE Y Y Y Y Y
Controls Y Y Y Y Y
R-squared 0.72 0.67 0.46 0.41 0.88
Observations 129, 000 129, 000 129, 000 129, 000 129, 000

Notes: The table shows the coefficients on the log of the standard deviation of the weather-induced shipping times,

̂StdT imefht−3,t−1, from specification (8) for different dependent variables: the log of the number of routes (col. 1), the

log of the number of foreign suppliers (col. 2), log HHI across routes (col. 3), log HHI across suppliers (col. 4), and the log

total value imported (col. 5). The number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau

Disclosure Guidelines. Standard errors are clustered at the firm level. Regression includes controls for three-year average of

weather-induced shipping times, average unit value paid, the importer’s total imports over the previous three years, and the

suppliers’ total exports to the U.S. over the previous three years. For brevity, the table does not report the coefficients of these

regressors. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% level, respectively.

Results. Table 6 presents the findings for the sample period 2011-2019. Standard errors

are clustered at the firm level. Column 1 documents a positive and significant relationship

between the number of routes used and shipping risk. An increase in risk from the 25th to

the 75th percentile of the weather risk distribution (51 log points) increases the number of

shipping routes used by 9.0%. Column 2 shows that there is also a positive relationship

between the number of foreign suppliers and risk. An increase from the 25th to the 75th

percentile of the risk distribution increases the number of suppliers used by 5.9%. The larger

coefficient on risk in column 1 than in column 2 suggests that importers diversify weather

risk primarily by adding routes rather than suppliers, as weather risk is route-specific and

suppliers may share the same routes.

We next look at the relationship between shipping time risk and the concentration

of import value across an importer’s routes and suppliers. Column 3 reports a negative

and significant coefficient between shipping risk and the HHI over routes, suggesting that

importers with riskier routes feature a more diversified pattern of expenditure across their

routes. Column 4 shows that this effect is similar when we look at the concentration across

suppliers. Lastly, in column 5, we find a negative and statistically significant relationship

between shipping time risk and total import value. Quantitatively, going from the 25th to

the 75th percentile of the risk distribution decreases the route HHI by 4.5%, the supplier HHI

by 3.7%, and total imports by 4.3%.
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Taking stock, our empirical analysis shows that importers with riskier supply chains rely

on more routes and foreign suppliers to source their inputs, and reduce the concentration

of their input expenditures. We interpret these results as evidence of risk diversification

behavior, operating at both the extensive and intensive margins. In addition, we find that the

net effect of these different margins of adjustment is a significant reduction in total imports.

Importantly, this negative effect of risk on import demand is estimated controlling for the

effect of average shipping times, which is the focus of Hummels and Schaur (2013). We

incorporate these channels into a model with risky shipping times in Section 4.

3.2.1 Selection Bias, Robustness, and Diversification via Air Shipping

Our empirical results show that firms that are more exposed to shipping time risk feature a

more diversified structure of import demand. The measure of risk exposure, however, takes

the firm’s set of suppliers and routes as given, raising the concern of selection bias. We

now discuss various forms in which this selection could affect our results. Consider first

the case where importers differ in their risk aversion. To the extent that more risk averse

importers feature safer suppliers/routes and also more suppliers/routes, this selection works

against our empirical findings. That is, it produces a negative relationship between shipping

time risk and the number of suppliers or routes. Consider next the role of firm size. In

the presence of fixed costs to adding suppliers and routes, larger firms would feature more

suppliers/routes. If in addition larger firms feature riskier suppliers and routes, this selection

could produce relationships as the ones documented in the previous section. We address

this issue by including firm fixed effects and controlling for past imports. Moreover, in our

sample we instead find a negative and significant correlation (-0.26) between the size of the

firm (proxied with log sales) and our risk measure.

We next perform a number of robustness exercises with our weather risk measure and

report their results in Appendix B.2. First, we show that we obtain similar results using

an alternative measure of weather risk, which we construct by predicting where the vessel

is on the route on each day assuming that the vessel travels at constant speed, and using

local weather conditions around the vessel’s likely location. Going from the 25th to the 75th

percentile of the risk distribution for this measure (61 log points) increases the number of

shipping routes used by 9.9%, the number of suppliers by 6.4%, and reduces total imports by

5.7%.

Second, we report the results using the broader risk measure that is constructed by taking

the standard deviation of the residual from running equation (3) without the weather terms.

The results are similar both qualitatively and quantitatively: an increase from the 25th to the
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75th percentile of the risk distribution (91 log points) increases the number of routes used by

8.4% and the number of suppliers by 5.2%. Moreover, it decreases the route HHI, supplier

HHI, and total imports by 4.3%, 3.2%, and 5.6%, respectively.

Third, we show that our results also hold when we include firm-time fixed effects, which

control for firm-level shocks that may affect production choices, instead of firm and time fixed

effects separately. Fourth, we also obtain similar findings when we include in the sample

firms sourcing from a single supplier, and when we focus only on the risk of the importer’s

main supplier rather than a weighted average across suppliers. Fifth, our main findings

are unchanged when we control for importers’ inventories, which have been recently shown

to be an important margin of adjustment to sourcing risk (see Alessandria et al. (2023),

Carreras-Valle (2024)).

Lastly, we analyze whether U.S. firms use different modes of transportation to diversify

shipping risk. We focus on air shipments, as over half of all importer-product-year combina-

tions are sourced by both vessel and plane. To do so, we construct a dummy variable that is

equal to one if a firm has obtained imports by air in year t, and estimate a variant of our

main specification, equation (8),

dfht = α + β1 ln( ̂StdT imefht−3,t−1) + β2Xfht + γf + µh + δt + ϵfht, (9)

where dfht is a dummy that is equal to one if firm f uses air shipments for HS10 h in year t,

and ̂StdT imefht−3,t−1 is the same weather-based risk measure as before. The controls Xfht

are identical to the ones used before, except that the importer’s log total value of imports

is now split up into imports by vessel and imports by airplane to account for the relative

importance of both. Table 7 documents that higher shipping risk is associated with a higher

likelihood of using air shipments. An increase in risk from the 25th to the 75th percentile of

the weather risk distribution increases the likelihood of using air shipments by 1.6%. While

the effect is small since firms use air shipments likely for many reasons, for example for fast

delivery of seasonal goods, our findings suggest that firms use air transportation to hedge

ocean shipping risk.16

Taken together, our empirical findings establish that U.S. importers systematically react

to shipping risk along different margins of adjustment. Importers with riskier suppliers or

routes feature i) more suppliers and routes, ii) less concentrated import expenditures, iii)

lower imports, and iv) use multiple modes of transportation.

16This result is in line with the findings in Hummels and Schaur (2010), who show that firms use air
shipping to smooth demand volatility on international markets.
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Table 7: Shipping Time Risk and Import Demand with Air Shipments

Dep. Var.: Air Shipments
Std Time 0.032∗∗∗

(0.003)

Avg Time 1.108∗∗∗

(0.081)

Importer FE Y
Product FE Y
Year FE Y
Controls Y
R-Squared 0.54
Observations 129, 000

Notes: The table shows the coefficient on the standard deviation of the weather-induced shipping times, ̂StdT imefht−3,t−1,

from specification (9). The dependent variable is a dummy that is equal to one if firm f uses air shipments for HS10 h in year t.

The number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure Guidelines. Standard

errors are clustered at the firm level. Regression includes controls for three-year average of weather-induced shipping times,

average unit value paid, the importer’s total imports over the previous three years, separately by vessel and by air, and the

suppliers’ total exports to the U.S. over the previous three years. For brevity, the table does not report the coefficients of these

regressors. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% level, respectively.

4 A Model of Input Sourcing with Shipping Risk

To rationalize the empirical evidence on shipping time risk and to quantify its aggregate

implications, we lay out a theoretical framework that builds on standard models of importing

with firm heterogeneity, as in Halpern et al. (2015), Blaum et al. (2018), and Gopinath and

Neiman (2014). As in these models, imported intermediate inputs lower firms’ marginal

production costs due to production complementarities and differences in qualities and prices,

but importing requires the payment of fixed costs. Our key departure from this literature is

that inputs’ shipping times are a component of input quality, thus affecting production levels

in the spirit of Hummels and Schaur (2013), and that such shipping times are stochastic. As

a result, firms have incentives to increase the number of foreign suppliers to mitigate the

impact of shipping time risk on expected revenues.

Section 4.1 outlines the environment of the model, while Section 4.2 characterizes the

firm’s problem. Section 4.3 provides theoretical results that describe the impact of risk on

import demand. Section 4.4 closes the model in equilibrium. We calibrate the model and

perform counterfactuals in Section 5.
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4.1 Environment

We consider a small open economy populated by a fixed mass of risk-neutral firms that

produce differentiated manufacturing varieties which are sold locally. Firms produce by

combining labor, a domestic input, and a foreign input according to the following nested

structure:

yf = φf l
1−γ

x ε−1
ε

D +

(
N∑
i=1

αixi

) ε−1
ε

γ ε
ε−1

, (10)

where f denotes a firm, φf is firm efficiency, γ ∈ (0, 1) and ε > 1. Labor l is combined with

an intermediate input bundle using a Cobb-Douglas aggregator. The intermediate bundle,

in turn, is a CES aggregator of a domestic input with quantity xD and a foreign input that

is sourced from N suppliers, with quantity xi and quality αi for supplier i. As is standard

in the literature, the extensive margin of trade is limited by fixed costs. In particular, each

foreign supplier entails the payment of a fixed cost F in units of domestic labor.17

The firm chooses its suppliers from a pool of unlimited foreign suppliers to whom it is

exogenously matched. A central element of our theory is that supplier shipping times are

stochastic and unknown to firms at the time of placing orders. Furthermore, motivated by

our empirical evidence, shipping delays adversely impact production by reducing the quality

of inputs αi, similarly to Hummels and Schaur (2013). For tractability, we assume that

the suppliers of any given firm are ex-ante identical but may differ ex-post in their realized

shipping times—implying that the extensive margin of trade can be summarized by the

number of suppliers.

We parametrize the relationship between input quality and shipping time as:

αi =

 ᾱi if di ≤ E [di]

e−τ ·di if di > E [di] ,
(11)

where di are the number of days it takes to ship the input of supplier i to firm f , ᾱi = e−τ ·E[di],

and E [di] is the expected shipping time. This formulation implies that, if an input arrives

earlier than or just as expected, it has a constant level of quality ᾱi. Instead, if an input

arrives later than expected, quality falls with shipping time with an elasticity given by τ .18

17This production structure is standard in the literature—it corresponds to the one in Gopinath and Neiman
(2014) or Blaum et al. (2018) when foreign inputs are perfect substitutes. We abstract from love-of-variety
effects for the foreign inputs to focus on the extensive margin of importing as a channel of risk diversification.

18The specification in equation (11) rules out risk loving behavior by imposing that early input arrivals do
not increase production. This property will be useful in the quantitative exercises of Section 5 to come to
terms with the empirical evidence of Section 3.
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For each importer, the shipping days di are i.i.d. and drawn from a CDF given by Gf (·),
which is known to the firm at the time of placing input orders. Additionally, this distribution

is importer-specific to allow for differences across importers in the riskiness of their foreign

suppliers. This feature enables the model in our quantitative exercises to account for firms’

differential exposure to risk observed in the data.19

Firms are price takers in input markets and thus can source any quantity of the domestic

and foreign inputs and labor at prices pD, pM , and w, respectively. We assume that foreign

input prices pM , which incorporate any variable trade costs, are exogenously given and common

across all suppliers. In output markets, firms compete under monopolistic competition.

The firms are owned by a representative consumer who is endowed with L units of labor

and consumes the locally produced manufacturing goods with preferences given by:

C =

(∫
cf

σ−1
σ df

) σ
σ−1

, (12)

where σ > 1 and cf denotes final consumption of the good produced by firm f.20 To allow

for input-output linkages across firms, we assume a structure of roundabout production by

which firms use the output of all other domestic firms as inputs. In particular, the domestic

bundle xD is produced by a perfectly competitive intermediary sector that uses the same

CES aggregator as in (12).21

4.2 Firm’s Problem under Risk

We next describe the firm’s problem of choosing domestic and foreign input quantities and

the number of suppliers in the presence of risk. The total sales of firm f , which include

demand from both consumers and other firms, are:

Rf = y
σ−1
σ

f P
σ−1
σ S1/σ, (13)

19In the quantitative exercises of Section 5, we design the exogenous assignment of firms to suppliers to
replicate the negative correlation between firm size and supplier riskiness observed in the data. A micro-
foundation where firms search for suppliers, and finding safer suppliers is more costly, would deliver this
pattern.

20For simplicity, we abstract from exporting, importing of final goods, and consumption of non-tradable
goods. Incorporating these elements, as in Blaum (2024), is feasible but would complicate the analysis without
giving additional insights.

21The assumption that the CES aggregators for the domestic input and consumer utility coincide is made
for tractability. Under this assumption, we do not need to treat sales to the consumer and to the domestic
input producer separately in the firm’s problem. See also Blaum et al. (2018); Gopinath and Neiman (2014);
Adão et al. (2025) for a similar assumption.

25



where yf is given by equation (10), P is the price index associated with (12) and S denotes

total domestic spending (combining demand by firms and consumers). Both P and S are

endogenous variables determined in general equilibrium.

Firms choose the quantities of domestic and foreign inputs, as well as the number of

foreign suppliers, before the realization of uncertainty. The quantity of labor is instead chosen

after uncertainty is realized. This assumption simplifies the numerical solution to the firm’s

problem in the quantitative exercises below. Since foreign suppliers are ex-ante symmetric, in

the first stage the firm sources the same quantity from all suppliers, i.e., xi = x for all i. After

maximizing out labor, the firm’s problem before the realization of uncertainty is given by:

max
xD,x,N

χfE


x ε−1

ε
D +

(
N∑
i=1

αi(di)

) ε−1
ε

x
ε−1
ε

ψ
− pDxD −NpMx− wNF, (14)

where χf and ψ depend on firm efficiency, general equilibrium variables, and parameters,

and α(di) is given by (11).22 Note that the expectation operator is taken over the possible

realizations of di and thus depends on the distribution of shipping times Gf (·).

In choosing the number of foreign suppliers, firms trade off the diversification of shipping

risk against the payment of the fixed costs. Similarly, the choice of the quantity of the

imported input x is limited not only by its price but also by the associated shipping risk.

Before turning to the definition of the equilibrium, we illustrate how risk affects the firm’s

production choices in a simplified environment.

4.3 The Workings of Risk

Can the theory outlined so far come to terms with the evidence documented in Section 3

on the effect of shipping risk on import demand? To answer this question, we now study

the effects of increased risk in supplier input quality on import demand. For tractability, we

consider in this section a version of the model without the domestic input and we abstract

from general equilibrium forces. In the quantitative exercises of Section 5, we allow for such

effects and include the domestic input in the production. All derivations of this section are

contained in Appendix C.2.

After maximizing out labor and the foreign inputs, the firm’s problem in the simplified

22See Section C.1 of the Appendix for the definitions of χf and ψ and a derivation of (14).
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version of the model becomes:

max
N

χ̃f
(
E
[
ᾱψ
]) 1

1−ψ︸ ︷︷ ︸
=R̃

− wNF, (15)

where ᾱ ≡ 1
N

∑N
i=1 αi is the average supplier quality, ψ ≡ γ(σ−1)

1+γ(σ−1)
∈ (0, 1), χ̃f is a constant

that depends on firm efficiency, general equilibrium objects (held fixed in this section)

and parameters, and R̃ is expected revenues net of labor and foreign input variable costs.

Expression (15) makes it clear that volatility in the average supplier quality lowers expected

revenues as ψ < 1. Relying on a second order approximation of ᾱψ around E [α], the firm

problem can be written as:

max
N

χ̃f

(
(E [α])ψ − ψ

(1− ψ)

2
(E [α])ψ−2 1

N
V [α]

) 1
1−ψ

− wNF, (16)

where E [α] and V [α] are the mean and variance of the supplier-level quality. This expression

highlights the role of the mean and the variance of supplier quality, as well as of the number

of suppliers, in shaping expected revenues. In particular, dispersion in input qualities reduces

expected revenues. By increasing the number of suppliers N , the firm lowers the variance

of the average supplier quality V [ᾱ] = V [α] /N , thus reducing the effective amount of risk

faced and mitigating its effects on expected revenues. The following result formalizes the

effect of increased supplier risk for the case where N is continuous.

Proposition 1. (Effect of Risk on Inputs) Let N∗ be the optimal number of suppliers and

ϵN∗,V[α] =
∂N∗

∂V[α]
V[α]
N∗ be the elasticity of N∗ with respect to the variance of supplier-level quality

V [α]. Then ϵN∗,V[α] > 0 if and only if

1

N∗
V [α]

(E [α])2
<

2

ψ
. (17)

That is, under condition (17), a higher V [α] leads to an increase in N∗. Furthermore,

ϵN∗,V[α] < 1 regardless of whether (17) holds. It follows that a higher V [α] always reduces the

import value.

Proof. See Section C.2 of the Appendix.

The first part of Proposition 1 states that a mean preserving spread in supplier-level

quality increases the number of suppliers, if condition (17) holds. There are two opposite

forces at work. When the variance of quality, V [α], is higher, holding constant the expected
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value E [α], an increase in the number of suppliers leads to a larger reduction in the variance

of average supplier quality, V [α] /N, which is what matters for expected profits (16). This

force increases the returns to adding suppliers. At the same time, a higher variance of

supplier-level quality reduces expected revenue, leading to a lower return to adding suppliers.

When supplier risk is a small part of expected revenue, as ensured by condition (17), the

negative level effect on expected revenues is dominated by the stronger reduction in the

variance of average quality. As a result, a mean preserving spread in supplier quality increases

the number of suppliers.

In the second part of the proposition, we turn our attention to import values. To

understand this result, note that the import value at the optimal number of suppliers,

N∗x∗pM , is proportional to expected revenue and thus is a decreasing function of the variance

of average supplier quality V [α] /N∗—see (16).23 An increase in the variance of supplier-

level quality therefore lowers import value if N∗ either decreases or it increases less than

proportionally with V [α]. The proposition establishes that ϵN∗,V[α] < 1 and hence that import

value necessarily falls with more volatility in supplier quality.24

In connecting these results to our findings of Section 3, it should be noted that in the

empirical analysis we measure the volatility of suppliers’ shipping times, not of input qualities,

which are unobservable. In our theory, a mean-preserving spread to the distribution of

shipping days affects both the variance and the mean of input qualities. In particular, given

the non-linear mapping between days and qualities, the expected input qualities can increase

or decrease depending on parameters. In turn, the effect of a given change in expected

quality on the returns to adding suppliers also depends on parameters (see Section C.4 of the

Appendix for a formal treatment). Ultimately, whether the theory can come to terms with

our empirical findings on shipping time volatility and import demand documented above is a

quantitative matter which we tackle in Section 5. There, we consider a calibrated version of

the model with a domestic input, general equilibrium, and firm heterogeneity. Before turning

to this analysis, we next show how the model is closed in equilibrium.

23As shown in Appendix C.2, total import value is given by

NxpM ≈ (pM )
− ψ

1−ψ

(
ψχ̃

(
(E [α])

ψ − ψ
(1− ψ)

2
(E [α])

ψ−2 1

N
V [α]

)) 1
1−ψ

.

24In Appendix C.3, we also investigate how the firms’ response to risk, both in terms of the number of
suppliers and import value, depends on productivity.
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4.4 Equilibrium

Thus far we have studied the effects of increased shipping time risk for a firm when aggregate

domestic spending and the price index are kept fixed. In going forward, we allow this

firm-level risk to affect these equilibrium variables. We abstract from aggregate risk by

assuming that there is a continuum of firms of unit mass within each type f. We consider an

equilibrium where firms maximize profits, the consumer maximizes utility, and goods markets

clear. We do not impose labor market clearing and therefore allow the manufacturing sector

to run a deficit or a surplus with the rest of the economy or the world. An equilibrium can

be fully characterized by the aggregate domestic spending S and the price index P associated

to consumer utility. Note that the price of the domestic input bundle is given by pD = P as

the domestic input aggregator is identical to consumer preferences. We normalize the wage

to unity. We now describe how S and P are determined.

Consumer expenditure is given by:

PC = wL+Π, (18)

where Π ≡
∫
πfdf are aggregate profits and πf are expected profits of firm type f . Because

there is a unit mass of firms of each type, πf is also the aggregate profits of type f. Given

the roundabout structure by which firms use locally-produced manufacturing products as

inputs, aggregate domestic spending satisfies:

S = PC + pD

∫
xDfdf, (19)

where xDf is the demand for the domestic input of firm f . Standard calculations imply that:

P =

(∫
pf

1−σdf

) 1
1−σ

, (20)

where pf is the price set by firm type f . An equilibrium is attained whenever (18), (19), and

(20) are satisfied and firms choose their inputs optimally—see Appendix C.5 for additional

details.
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5 Counterfactual Analysis: Climate Change and Infrastruc-

ture Risk

The empirical evidence in Section 3 shows that firms increase their number of suppliers and

reduce their import values when faced with greater shipping time risk, patterns that the

theory developed in the previous section can qualitatively generate. We now discipline the

model’s parameters with key moments of the data—notably, our reduced-form estimates of

the effect of shipping risk on firms’ sourcing decisions—to establish that the model can also

quantitatively come to terms with our empirical evidence (Section 5.1). We then employ

the model to quantify the aggregate consequences of climate change and strains on port

infrastructure (Section 5.2). These exercises highlight how our quantitative model can be

used as a laboratory to assess the impact of any risk event affecting ocean shipping on U.S.

imports and welfare.

5.1 Calibration

Our calibration strategy requires the model to replicate various moments related to suppliers’

shipping time risk. To assess whether the model can be consistent with the empirical evidence

of Section 3, we target our estimate of the effect of shipping time risk on the extensive margin

of importing. We do not target the effect of risk on import values, and thus leave this moment

for model evaluation. Additionally, we require that the model matches the sensitivity of sales

to shipping times. Finally, given our focus on aggregate effects in the counterfactuals, we

target the joint distribution of firm size and supplier risk across importers. We next describe

how we parameterize this distribution.

Parametrization of Firm Heterogeneity and Shipping Days To generate cross-sectional

variation in importer size and exposure to supplier risk, we allow for firm types to be

heterogeneous in two dimensions: efficiency φf and the standard deviation of shipping days of

their suppliers σdf . Firm efficiency φf is drawn from a log-normal distribution with standard

deviation σφ (we normalize average log efficiency). The economy is populated by two types

of suppliers, low and high risk: σdf ∈ {σdL, σdH}. To allow for firms of different sizes to differ

in their risk exposure, we let the risk type be correlated with firm efficiency. Specifically, we

assign each firm a draw of a latent risk variable σldf generated according to:

log
(
σldf
)
= ρφσ log (φf ) + vf , (21)
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where ρφσ is a parameter that controls the correlation between the latent risk variable and

efficiency, and vf is a standard normal random variable. We then assign the high (low) risk

type to firms with latent risk above (below) the median.

For any foreign supplier matched to an importer of type f , the distribution of shipping

days di is log normal with standard deviation σdf and mean µdf . Shipping days are i.i.d.

across a firm’s suppliers.

Parameters, Moments, and Identification We measure risk for each type, σdL and σdH ,

using the standard deviation of the residualized log shipping times over three-year rolling

windows. We compute the average of this measure within the groups of firms above and

below the median risk. To isolate the role of supplier risk, we set expected log shipping

days µdf for each type to match a common average shipping time of 19.1 days, which is the

average across all seaborne shipments reported in the LFTTD (Table 2).

The fixed cost of adding foreign suppliers F, the elasticity of input quality to shipping time

τ , the price of imported inputs pM , the dispersion in firm efficiency σφ, and the risk-efficiency

correlation parameter ρφσ are chosen to match the following moments of the data: (i) the

elasticity of the number of routes with respect to shipping risk, (ii) the elasticity of sales to

shipping times, (iii) the aggregate import share, (iv) the coefficient of variation of log sales,

and (v) the correlation between log sales and our risk measure. We use the number of routes

to measure the extensive margin of importing in (i) since that is the firms’ main margin of

diversification associated with our weather-based identification strategy. All moments are

measured from the sample of U.S. manufacturing importers used in the empirical analysis of

Section 3.

While each moment is affected by all parameters in equilibrium, intuitively, a higher cost

of adding suppliers F makes diversification through the extensive margin of trade more costly,

and thus controls the elasticity of the number of suppliers with respect to risk (Figure 3, left

panel). The parameter τ affects the degree to which qualities, and thus revenues, fall with

longer shipping times (Figure 3, center panel). Importantly, this negative association between

shipping times and sales predicted by the model is verified in the data. A panel regression of

log sales on the average weather-induced shipping time of the firm’s imported inputs yields a

negative and statistically significant coefficient.25 By affecting the relative price of imported

inputs, pM controls firms’ expenditure on foreign inputs and thus the aggregate import share

(Figure 3, right panel). Finally, σφ controls the dispersion in firm size and ρφσ regulates the

25The regression includes firm and year fixed effects and yields an estimated coefficient on the average
weather-induced shipping time of -0.27 with a standard error of 0.07 clustered at the firm level.

31



Figure 3: Identification of Parameters

Notes: Each graph plots a specific moment as a function of the relevant parameter, holding constant the other parameters at
their calibrated values. The elasticitiy of the number of suppliers (N) with respect to risk is the estimated coefficent of a
cross-sectional regression of log optimal N on the log of the standard deviation of weather-induced shipping days, controlling for
firm efficiency. The elasticity of sales with respect to shipping time is the coefficient of a cross-sectional regression of log sales on
the log of shipping time.

correlation between firm size and risk.

Lastly, we set the elasticity of substitution between domestic and foreign inputs to ε = 2.38

and the demand elasticity to σ = 3.83 as in Blaum et al. (2018). We set the output elasticity

with respect to materials to γ = 0.58 to match the average material expenditure share, defined

as the ratio of material costs to material plus labor costs, in our sample.26

Calibration Results We report the calibrated parameter values in Table 8. The model

is able to closely match the targeted moments. The average fixed costs paid are $121,300

dollars, which are in line with the literature (Fieler et al. (2018); Antràs et al. (2017)).27

An important feature of our calibration is that the model roughly matches the elasticity

of imports with respect to risk estimated in Section 3 (Table 6), despite not targeting this

moment directly (see bottom of Table 8). This feature, together with the close match of the

elasticity of the number of routes with respect to risk, implies that our quantitative model is

able to come to terms with the key empirical findings of Section 3.

26These parameter values are standard in the literature. Estimates of the demand elasticity σ typically
range between 3 and 6 (De Loecker (2011)), with Antràs et al., 2017 estimating σ = 3.85 for US manufacturing
firms. These authors also estimate an elasticity of substitution of ε = 2.8. Halpern et al. (2015) find a value
of ε = 4 using Hungarian data—which is the same value used by Gopinath and Neiman (2014). Finally,
Blaum et al. (2018) find an estimate of γ = 0.61.

27We back out the average fixed costs from the ratio of average sales to average fixed costs and the
assumption that average sales are the same as in the data ($79 million in our sample).
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Table 8: Calibrated Parameters and Targeted Moments

Parameter Moment Model Data

Fixed Cost per Supplier F 0.01 Elast. of N w.r.t. Risk 0.18 0.18
Elasticity of Input Quality τ 0.07 Sales Elast. w.r.t. Ship. Time -0.14 -0.27
Foreign Input Price pM 0.70 Aggregate Import Share 0.28 0.28
Std. Dev. Log Efficiency σφ 0.16 Coef. of Variation Log Sales 0.21 0.22
Corr. High Risk and Efficiency ρφσ -1.30 Corr. Log Sales and Risk -0.22 -0.26

Std. Dev. of Shipping Times (High) σdH 0.28 Avg. ̂StdT ime above median 0.28 0.28

Std. Dev. of Shipping Times (Low) σdL 0.09 Avg. ̂StdT ime below median 0.09 0.09
Expected Log Shipping Days (High) µdH 2.91 Average Shipping Days 19.1 19.1
Expected Log Shipping Days (Low) µdL 2.95 Average Shipping Days 19.1 19.1

Not calibrated: Not targeted:
Elasticity Domestic-Foreign Inputs ε 2.38 Elast. of Imports w.r.t. Risk -0.16 -0.09
Demand Elasticity σ 3.83
Output Elast. w.r.t. Materials γ 0.58

Notes: The elasticities are coefficient estimates of cross-sectional regressions of log N , log sales, and log import

value on log of the standard deviation of shipping days (controlling for firm efficiency), or log shipping times.

The aggregate import share is the fraction of material expenditure accounted by foreign inputs. ̂StdT ime is

the measure of risk defined in Section 3.2. The moments in the data are measured in the 2011-2019 period.

Sources: U.S. Census Bureau and authors’ calculations.

5.2 Counterfactual Analysis

Armed with the calibrated model, we assess the impacts of two scenarios of heightened risk:

climate change and port congestion. We also study the consequences of a complete removal

of shipping time risk.

Climate Change. We simulate an increase in weather volatility due to climate change over

the next 50 years under the assumption that future weather conditions will continue to

follow their historical trend. We use the matched dataset of shipping routes and weather

conditions from our empirical analysis, but extend the weather data to 2023 to capture a

trend over a longer period. We use daily data to compute the standard deviation of wave

height across days for each year and location, and then compute the annual growth rate of

these standard deviations between 2011 and 2023 (see Figure 1 in the Introduction). The

average annual growth rate across all locations is 0.34%. This pattern is consistent with

the findings of Young et al. (2011) for 1985-2008, and with work suggesting an increasing
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likelihood of extreme wave heights (e.g., Shi et al. (2024)).28 Compounding this growth over

50 years, we obtain a long-run growth rate in the standard deviation of wave height of 18.5%.

Assuming that the log-linear model of weather conditions of Section 2.4 is stable over time,

this implies an equivalent growth rate in the standard deviation of log shipping times, which

we feed into the model.29

Port Congestion. In the second exercise, we evaluate the economic effects of the greater

variability of waiting times at ports due to the rise of port congestion that occurred globally in

the aftermath of the Covid pandemic. We capture congestion using the Average Congestion

Time (ACT) measure developed by Bai et al. (2024), which reflects the average number of

hours a container ship waits at port before docking at the berth for the top-50 container ports

worldwide. Starting in late 2020 and until the end of 2022, both the level and the volatility

of waiting times increased as strains on global supply chains intensified. In particular, using

monthly data between January of 2017 and June of 2024, we find that the standard deviation

of the ACT was 52% higher in the January 2021-December 2022 period than in the rest of

the sample. We feed this shock into our model as a change in the standard deviation of

shipping times of 52% for all firms.

Results. Table 9 summarizes the aggregate effects of the counterfactuals on the U.S.

manufacturing sector. The two scenarios feature qualitatively similar results, although the

port congestion simulation implies a stronger impact due to the larger magnitude of the shock.

The average number of suppliers grows by 18.6% (31.9%) in the climate (port congestion)

counterfactual, as firms diversify the increased risk of international shipping delays. The

increase in N is larger for firms with high-risk suppliers, which on average raise N by 42%

(71.5%).

Total manufacturing imports fall by 1.3% (2.8%), corresponding to a decline in U.S.

imports of about $15.4 ($33.1) billion dollars relative to 2019.30 The decline in imports is

stronger for high risk firms, which on average contract their imports by about -4% (-8.8%).

As importers substitute risky foreign inputs with domestic ones, production costs and prices

rise, with the price index growing by 0.6% (1.4%). Despite an increase in total domestic

28Work in the oceanography literature typically does not report changes in the standard deviation of wave
height and instead focuses on the mean and the 99th percentile. Young et al. (2011) find no annual change
in the average wave height, an annual increase of 0.25% of the 90th percentile, and an annual increase of
0.50% of the 99th percentile, suggesting a moderate annual increase in the dispersion of wave height.

29In all counterfactuals, we hold the average αi constant across risk types, effectively feeding into the
model a mean preserving spread to supplier qualities.

30The U.S. imported $1.17 trillion in 2019, excluding consumption and capital goods, based on import
data from the U.S. Census Bureau.
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Table 9: Counterfactuals

Growth in (%) Climate Change Port Congestion Removing Risk

Average N 18.58 31.86 -11.06
Total Import Value -1.32 -2.83 5.21
Import Share -1.70 -2.53 7.29
Price Index 0.63 1.45 -2.93
Total Domestic Spending 0.42 0.87 -1.96
Real Income -0.49 -1.13 2.27

Notes: The table reports aggregate statistics associated with (i) an increase in the standard deviation of log

shipping times of 18.5% (first column), (ii) an increase in the standard deviation of shipping times of 52%

(second column), and (iii) the elimination of risk (third column).

spending stemming from the shift towards domestic input production, U.S. real income is

reduced by 0.5% (1.1%).31

Removing Shipping Time Risk. We conclude this section by quantifying the effects of a

complete removal of shipping time risk (Table 9, column 3). When risk is removed, there

is a 11.1% reduction in the average number of foreign suppliers used by importers. This

happens because, without risk, foreign suppliers are as safe as the domestic ones and firms

save on the fixed costs of foreign sourcing. The removal of shipping uncertainty also implies

an increase of 5.2% in aggregate imports, or $61 billion relative to 2019, and an increase of

7.3% in the aggregate import share. Total domestic spending falls as there is lower demand

for the domestically produced input. Overall, removing shipping risk lowers production costs

and prices, resulting in a 2.9% reduction in the price index and a 2.3% increase in U.S. real

income.

6 Conclusions

In this paper, we combine U.S. Census shipment-level data with information on ocean wave

conditions along shipments’ maritime routes to construct a novel measure of weather-based

supply chain risk. We document substantial negative effects of shipping delays on firms’

sales, profits, and employment, and study how exposure to shipping time risk correlates with

the pattern of import demand of U.S. manufacturing firms at the intensive and extensive

margins. Our results show that U.S. importers that are more exposed to shipping time

31In Appendix C.6, we examine the counterfactual effects on sales, profits, and employment and compare
them to a back-of-the-envelope calculation based on the reduced-form coefficients from Table 4.
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volatility subsequently feature lower imports, a larger number of routes and suppliers, and a

lower concentration of expenditure across routes and suppliers, which indicates that firms

actively diversify this source of risk. To rationalize this evidence, we introduce risky delivery

times into a quantitative model of firm-level importing. We show that increases in shipping

risk associated with climate change and port congestion can have significant impacts on

supply chains and welfare.

Our findings carry relevance at a time of increasing climate and geopolitical risk, and

contribute to a rapidly growing literature discussing the implications of increasing fragmen-

tation, re-shoring, and supply chain diversification. Our results suggest that there may be

limits to firms’ willingness to concentrate their sourcing too strongly on any one country or

region if it comes at the expense of higher delivery risk. Shedding more light on the dynamics

of supplier selection and on how firms adjust their supplier portfolio as they grow remain

important questions for further research.
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Online Appendix (Not for Publication)

A Data Construction and Summary Statistics

A.1 Data Construction

In this section, we describe the steps taken to clean the U.S. Census Bureau data.

We prepare the Longitudinal Firm Trade Transactions Database (LFTTD) by first

dropping all transactions with an invalid date, zero or negative transaction value, missing

vessel name, and cases with a missing importer and exporter ID, as well as transactions

that are likely to be incorrectly recorded as indicated by a blooper ID. Second, we drop

warehousing transactions and observations where the foreign exporter is recorded as being

in the U.S. Third, we use the concordance by Pierce and Schott (2012) to generate time

consistent 10-digit Harmonized System (HS-10) codes, and calculate prices as unit values

by dividing the value of the shipment by the quantity shipped. Fourth, we translate the

nominal shipment values into real values in 2009 prices using the U.S. GDP deflator.

Since the manufacturer ID (MID) differs across establishments of the same firm in different

locations and since logistics are likely arranged at the firm-level, we consider MIDs with the

same name and country component but with a different street address or city component to

belong to the same exporter. Specifically, we replace the MID with a shortened identifier

that contains only the country ISO code and the name portion of the ID.32 This approach

follows earlier work by Kamal et al. (2015) and Kamal and Monarch (2018). Kamal et al.

(2015) compare the number of MIDs in the Census data to the number of foreign exporters

for 43 countries from the World Bank’s Exporter Dynamics Database (EDD), which is based

on foreign national government statistics and private company data. They show that the

number of MIDs in the Census data matches well with the number of sellers in the EDD

when the street address or the city component are omitted. Kamal and Monarch (2018)

provide further support that the MID is a good identifier of foreign exporters.

The LFTTD also contains an indicator for whether a transaction is conducted between

related parties. Based on Section 402(e) of the Tariff Act of 1930, a related-party trade

is an import transaction between parties with ‘‘any person directly or indirectly, owning,

controlling, or holding power to vote, [at least] 6 percent of the outstanding voting stock

or shares of any organization.’’ To correct for missing or incorrect related-party flags, we

32While different establishments may have different efficiencies or distances to the port, we only observe
port-to-port shipping times.
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classify an importer-exporter pair as related if it had a related-party flag for any transaction

in the given year. Our final dataset includes all related-party trade, and we include the type

of relationship (arms’ length or related party) as one of the dimensions in the fixed effects in

specification (3).

We combine the import data with the Longitudinal Business Database (LBD) by merging

both datasets at the firm-year level. We collapse the plant-level observations in the LBD

to that level and construct each firm’s main industry in each year as the 6-digit NAICS

code associated with the highest employment. We use the time-consistent industry codes

constructed by Fort and Klimek (2018).

We also merge into our dataset firm-year level observations from the Census of Manufac-

tures (CMF) and from the Annual Survey of Manufacturing (ASM). The CMF captures the

universe of all manufacturing plants in census years (2012 and 2017). The ASM captures a

representative sample of manufacturing plants in the remaining years. We drop observations

that are not included in official census tabulations due to poor quality, and obtain plant-level

information on sales, value added, wages and labor costs (payroll), and beginning-of-year

total inventories. We set inventory observations that are imputed to missing, and collapse

the data to the firm-year level by summing over the plants belonging to the same firm. We

obtain materials costs as sales minus value added, and compute profits as sales minus cost of

materials minus payroll.

Trips construction We provide some further details on how we construct vessels’ trips. As

described in the main text, we sort all transactions involving a given vessel by their foreign

departure date. We then take all the vessel’s transactions and split them into trips using the

arrival date in the U.S. and the export departure date abroad. Specifically, for each trip we

find the earliest arrival date of the vessel in the U.S., and assign transactions with a later

export departure date abroad to a new trip. In some cases, however, the foreign departure or

U.S. arrival date is possibly misreported. For example, if transactions 1-5 depart abroad on

June 22 and arrive in the U.S. on July 5, transaction 6 departs on June 23 and purportedly

arrives on June 24, and transactions 7-10 depart on June 25 and arrive on July 5, then the

procedure described above would assign transactions 1-6 to one trip and transactions 7-10 to

another, even though almost all shipments arrive on the same day in the U.S. It seems likely

that the arrival date for transaction 6 is misreported. We therefore re-combine some of the

previously separated trips. For each of the trips assigned in the first step, we compare the

latest importation date in the U.S. to the earliest departure date abroad of the next trip. If

the earliest departure date abroad of the next trip is before the latest importation date of the
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earlier trip, then the two trips must have been part of the same journey and we recombine

these trips into one. We again iterate through this procedure until no more trips can be

combined. Our resulting final dataset contains trips with completely non-overlapping foreign

departure and importation dates for each vessel.

A.2 The Determinants of Shipping Times

In this section we examine the factors affecting vessel-borne shipping times that motivate the

inclusion of some of the fixed effects in specification (3).

Table A.1 presents the average shipping times and their standard deviation for vessel-

based shipments by origin. Shipments from Latin America and Canada tend to arrive fastest

in the U.S., while shipments from Oceania and Africa take the longest. There is a large

standard deviation of shipping times for all source countries.

Table A.1: Vessel-Based Shipping Times by Origin

(1) (2) (3)
Avg. Std. Total Value
Time Time ($Bill.)

Canada 9.96 22.22 27

Latin America 7.63 27.08 140

South America 21.78 18.65 111

Europe 16.10 18.06 585

Asia 20.37 20.12 1,130

Oceania 29.13 15.97 25

Africa 30.22 23.69 54

Other 25.16 23.73 19

Source: LFTTD. Table summarizes the distribution of shipping time and value across different origin regions for vessel-borne

shipments. Values are reported in billions of 2009 dollars.

We next investigate the role of the shipping route more formally by regressing each

transaction’s log shipping time separately on fixed effects for the U.S. port of entry (pi),

foreign port of departure (pe), and the port combination. These regressions yield an R2 of

0.19, 0.33, and 0.62, respectively, indicating that the port of origin - port of arrival pair

explains nearly two thirds of the variation. Replacing the port pair with pair-by-month fixed

effects raises the R2 to 0.69.

We finally analyze the role played by the season of the year, related party status, shipping

weight, and charges by running regressions of log shipping time for vessel-based shipments on
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Table A.2: Factors Affecting Vessel-Based Shipping Times

Dep. Var.: Log Shipping Times (1) (2) (3) (4) (5)
Q2 −0.036∗∗∗

(0.000)
Q3 −0.037∗∗∗

(0.000)
Q4 −0.024∗∗∗

(0.000)
Related-Party 0.006∗∗∗

(0.000)
Log Shipment Weight 0.008∗∗∗ 0.007∗∗∗

(0.000) (0.000)
Log Shipping Charges 0.005∗∗∗ 0.001∗∗∗

(0.000) (0.000)
R2 0.616 0.616 0.616 0.616 0.617
Port Pair FE Y Y Y Y Y
Observations (thousands) 18, 260 18, 260 18, 260 18, 260 18, 260

Notes: The unit of observation is an importer (f) - exporter (x) - HS10 (h) - vessel (v) - foreign country (c) - origin port (pe) -

destination port (pi) - foreign export date (te) - importation date (ti) combination. Rows 1, 2 and 3 represent quarter fixed

effects in Column (1). Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure

Guidelines. Standard errors are clustered at the country level.

these characteristics. We include fixed effects for the port pair in all regressions. We present

the results in Table A.2. In column 1, we test whether seasonality affects shipping times by

adding dummies for each quarter of the year. Shipping times are nearly 4% shorter in the

summer quarters of the northern hemisphere, highlighting the potential role of weather in

affecting shipping routes. In column 2, we find that related party transactions have slightly

longer shipping times relative to arms-length transactions. The next columns find a positive

relationship between shipping time and shipment weight, and also a positive one between

shipping charges and delivery times.

A.3 Analyzing Vessel Movements with AIS Data

In this section, we provide some further analysis of our constructed routes and of the effect of

weather conditions on shipping times using satellite Automatic Identification System (AIS)

data.

Vessel movements vs. routes As discussed in the main text, we construct the route

taken by vessels between ports across the ocean using Eurostat’s SeaRoute program. We

compare a subset of these constructed routes to actual vessel movements using AIS data

from MarineTraffic, a provider of ship tracking and maritime analytics services.33 These

33See https://www.marinetraffic.com.
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data report the precise location of vessels on the oceans based on transceiver signals of ships.

We downloaded detailed geolocations with time stamps for 74 vessels traveling on 19 routes

between July 10 and July 16, 2023 and between August 21 and August 28, 2023. For each

vessel, we obtained origin and destination port as well as speed, direction, and weather at

different locations (latitudes and longitudes) with detailed time stamps along the route. We

obtained on average 121 different observations for each vessel along its route, with a range of

between 13 to 373 data points. While we have historical data for each vessel, allowing us

to observe each vessel from its departure port, the limited time of our data access did not

permit us to observe each vessel until its arrival at the destination. On average, we observe

83% of a vessel’s full voyage from origin to destination (median: 90%).

Figure A.1a plots some routes across the Atlantic from the SeaRoute program against the

observed locations of vessels traveling on these routes. The vessel locations are reasonably

close to the routes, though not perfect. In particular, the SeaRoute program suggests that

vessels traveling between Bremerhaven and New York mostly follow a route to the North of

the United Kingdom, while the vessels we observe making the journey between these ports

followed a route to the South of Britain. In contrast, some vessels traveling to Jacksonville

followed the Northern route. Figure A.1b plots the routes across the Pacific. Here vessels

are closer to the routes near the end points, but follow a more Northern trajectory in the

middle. Finally, Figure A.1c plots vessel movements on South American routes. Overall, the

analysis shows that vessels tend to broadly follow the routes from the SeaRoute program,

but that there is substantial variation. This variation will introduce measurement error into

our weather variable that will bias our results towards zero.
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Figure A.1: Vessel Movements vs Routes

(a) Atlantic Routes (b) Pacific Routes

(c) South American Routes

Source: MarineTraffic and authors’ calculations. Notes: The figure shows the locations of vessels traveling between selected

ports against the routes from the SeaRoute program used for the analysis.

Vessel Speed and Weather Conditions We examine the effect of weather conditions on

vessel speed in the AIS data. MarineTraffic provides for each vessel at each recorded location

the course and speed, as well as the wind speed, wind angle, wave height, and wave direction.

We can therefore run similar regressions in these data as in the Census data to see whether

we find similar effects. Since we observe the vessel speed at each location, we use this variable

rather than the overall shipping time to analyze the contemporaneous effect of weather

conditions on speed. Specifically, we estimate:

ln(Speedijt) = β1Heightijt + β2Directionijt + β3Heightijt ·Directionijt + γi + ϵijt,
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where i indexes the vessel, j the location, and t is the time stamp. Here, Speedijt is the speed

of the vessel at location j and time t, Heightijt is the height of the waves, Directionijt is the

wave direction relative to the direction of travel (where zero indicates that the waves are

in the direction of travel), and γi are vessel fixed effects.34 The first column of Table A.3

presents the results. As in the Census data, higher waves increase the vessel speed: a one

standard deviation increase in significant wave height from the mean increases vessel speed

(hence reduces shipping time) by about 4 log points. Also consistent with the Census data, a

greater wave angle relative to the direction of travel has a positive effect on speed. When the

waves are against the direction of travel (180 degrees), vessel speed is about 13 log points

higher, reducing the shipping time.

In the second column of Table A.3 we run a similar regression, but use wind speed and

wind direction instead of wave height and direction. Related work on shipping times such

as Filtz et al. (2015) also finds a strong relationship between vessel speed and wind speed

and direction, which we do not observe in the WaveWatch III data. Wind speed should

be positively correlated with wave height, and hence we might expect similar results also

with respect to this variable. As expected, we find that vessels are faster when wind speed is

higher and when the wind is in the opposite direction of the vessel’s course. A one standard

deviation increase in wind speed (6 knots) raises vessel speed by 1.4 log points. Wind against

the direction of travel (180 degrees) increases speed by 4 log points. Overall, the results are

therefore consistent with the relationships between wave height and shipping times that we

observe with the Census data.

34We observe each vessel only on one route and so these are effectively vessel-route fixed effects.
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Table A.3: Effect of Weather on Shipping Times

Dep. Var: Vessel speed Vessel speed

Wave Height 0.0584∗∗∗

(0.0122)

Direction 0.0007∗∗∗

(0.0002)

Wave Height×Directions −0.0002∗∗

(0.0001)

Wind Speed 0.0024∗∗

(0.0011)

Wind Direction 0.0003∗∗

(0.0001)

Wind Speed×Wind Directions −0.0000
(0.0000)

Vessel FE Y Y
Observations 8,902 8,842

Source: MarineTraffic. Notes: First column shows regression of log vessel speed on wave height and relative wave direction.

Second column shows regression of log vessel speed on wind speed and relative wind direction. Direction of zero means that the

waves or wind are in the direction of travel.

Vessel Speed In the robustness analysis of our main results, we consider an alternative

weather shock measure that is based on vessels’ predicted location on the route segments,

assuming vessels travel at approximately constant speed. We verify this assumption using

the AIS data. We use the 18 vessels for which we observe the entire journey from origin to

destination port. For these vessels, we compute at each location the share of the journey

completed, in terms of distance, as well as the share of the journey passed in terms of total

voyage time. We then plot in Figure A.2 a bin scatter of the distance share against the

share of voyage time. Overall, we find that the fit line is approximately on the 45 degree

line throughout the journey, indicating that our assumption of constant speed is reasonable.

Vessels are slightly slower at departure, and then make up for this delay along the journey

before slowing down again near the arrival port.
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Figure A.2: Vessel Distance Covered vs Voyage Time Elapsed

Source: MarineTraffic and authors’ calculations. Notes: The figure plots the share of the distance completed against the share

of voyage time elapsed for 18 vessels for which we have complete voyage information.

A.4 Weather Summary Statistics

In this section we provide some further details on the wave height variable. Table A.4

provides some summary statistics on the mean and standard deviation of the significant

wave height and its (absolute) direction across all days in the data. We find that there is

substantial variation across both height and direction variable. For example, the mean wave

height is 2.6 meters, but at the 95th percentile the wave height is 5.4 meters.

Figure A.3 further shows that there is also significant variation in the standard deviation

of wave height across seasons. For example, both the northern Atlantic and the northern

Pacific experience significant volatility in wave height in the fall and winter, but less in the

summer.
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Table A.4: Weather conditions: summary statistics

Mean Sd p1 p5 p50 p95 p99
Significant wave height (m)

All 2.6 1.5 0.2 0.7 2.3 5.4 7.2

North Atlantic 2.2 1.3 0.3 0.8 1.9 4.8 6.9

South Atlantic 2.7 1.3 0.3 1.1 2.4 5.2 6.8

North Pacific 2.3 1.2 0.2 0.8 2.1 4.5 6.5

South Pacific 2.9 1.4 0.3 1.2 2.6 5.7 7.3

Indian Ocean 2.9 1.6 0.2 0.7 2.7 5.9 7.7

Significant wave direction (degrees)

All 203 81 20 52 217 319 343

North Atlantic 183 102 11 31 193 333 350

South Atlantic 217 65 31 91 220 316 343

North Pacific 185 98 17 40 194 325 344

South Pacific 216 67 33 83 223 315 339

Indian Ocean 210 63 27 80 219 297 328

Notes: The table shows summary statistics for the weather variables across all days in the data.

Figure A.3: Standard Deviation of Wave Height in Different Seasons

(a) Winter (b) Spring

(c) Summer (d) Fall

Notes: The figure shows the standard deviation of wave height across all days from 2011-2019 for different seasons. Seasons are

based on the Northern Hemisphere, i.e. December, January and February are winter months, March, April, and May are spring

months, and so on.
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B Additional Results for Empirical Analysis

B.1 Additional Results for Importer Performance

One concern with our baseline methodology of averaging the weather across all locations of

each trip segment on each day is that some of these locations may be very far away from the

vessel’s current location. We use an alternative approach that estimates vessels’ location on

each segment and uses weather only from the surrounding area. Specifically, we decompose

each trip segment into smaller sub-segments of 1,000 km of length and assume that vessels

travel through these areas at constant speed.35 We then find for each day of the journey the

local weather in the vessel’s current sub-segment and average these local weather conditions

across the vessel’s journey. We use this variable to run regression (3) of shipping times on

weather conditions, and show the results from this regression in Table B.1. We find that the

relationships between weather conditions and shipping times are less strong than under our

baseline specification, although still highly significant.

We construct an alternative measure of weather-induced shipping times t̃s,weather,alt using

equation (4) as in the main text, and construct weather-induced shipping delays as in Section

3.1. We then re-run regression (6):

ln(Y o
ft) = α + β1FracDelayed

alt
ft + γf + δt + ϵft,

where FracDelayedaltft is the fraction of imports subject to shipping delays constructed with

the alternative measure. Table B.2 shows the results. The coefficients are similar as with

the measure in the main text. A one standard deviation increase in delayed shipments (2.04

percentage points) is associated with a drop in sales of 5.4%, a decline in profits of 3.8%, and

a fall in employment of 0.9%.

As an additional robustness check, we re-run regression (3) without the weather terms,

and then use the residual from this regression as our measure of unanticipated shipping

times to construct delays. This measure picks up delays beyond those due to weather, such

as delays due to port delays or strikes, but requires that the delays we capture with these

residuals are unanticipated by importers. We find relatively similar coefficients to the main

text, but larger overall effects due to the greater standard deviation of this delay measure. A

one standard deviation increase in the fraction of delayed shipments, 0.031, is associated with

a drop in sales by 8.3%, a fall in profits by 4.7%, and in the number of employees by 1.6%.

35We use AIS data in Appendix A.3 to show that this assumption approximately holds in vessel tracking
data.
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Table B.1: Effect of Weather on Shipping Times – Alternative Weather Conditions

Dep. Var: ln(Ts)

Wave Heights −0.029∗∗∗ −0.029∗∗∗ −0.026∗∗∗

(0.000) (0.000) (0.000)

Directions 0.006∗∗∗ 0.013∗∗∗

(0.000) (0.000)

Wave Heights× −0.004∗∗∗

Directions (0.000)

R-Squared 0.788 0.788 0.788
Observations 9,892,000 9,892,000 9,892,000

Notes: The table reports the coefficients on the weather terms from estimating specification (3), using the weather at a vessel’s

imputed location. Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure Guidelines.

The variable wave height is expressed in meters, while the variable direction is expressed in hundreds of degrees. Importer, HS10

product, exporter, route-time, vessel, and related party fixed effects, as well as log charges and log weight, are included in the

regression but not reported in the table for brevity. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% level, respectively.

Table B.2: Effect of Extreme Delays on Firms’ Outcomes (Alternative Measure)

(1) (2) (3)
Weather Shocks (Alternative Measure)

Dependent Variable (in logs): Sales Profits Employees
Frac Delayed −2.627∗∗∗ −1.862∗∗∗ −0.444∗∗∗

(0.309) (0.354) (0.153)

Importer FE Y Y Y
Year FE Y Y Y
R-Squared 0.97 0.90 0.98
Observations 78, 000 78, 000 78, 000

Notes: The table reports the coefficients on the fraction of imports delayed, FracDelayedaltft , from specification (6), using the

alternative measure of weather-induced shipping times, t̃s,weather,alt, to compute the fraction delayed. Fixed effects for the firm

and the year are included. Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure

Guidelines. Standard errors are clustered at the firm level. Mean of FracDelayedweatherft is 0.0031 and standard deviation

is 0.0204. R2 is the overall fit inclusive of the fixed effects. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% level,

respectively.
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Table B.3: Effect of Extreme Delays on Firms’ Outcomes (Without Weather)

(1) (2) (3)
Dependent Variable (in logs): Sales Profits Employees
Frac Delayed −2.665∗∗∗ −1.511∗∗∗ −0.515∗∗∗

(0.219) (0.248) (0.117)

Importer FE Y Y Y
Year FE Y Y Y
R-Squared 0.97 0.90 0.98
Observations 78, 000 78, 000 78, 000

Notes: The table reports the coefficients on the fraction of imports delayed, FracDelayedft, from specification (6), using the

alternative measure of shipping times based on the residual from specification (3) without the weather terms to compute the

fraction delayed. Fixed effects for the firm and the year are included. Number of observations has been rounded to the nearest

1000 as per U.S. Census Bureau Disclosure Guidelines. Standard errors are clustered at the firm level. Mean of FracDelayedft

is 0.0060 and standard deviation is 0.0310. R2 is the overall fit inclusive of the fixed effects. ∗∗∗, ∗∗, and ∗ denote significance at

the 1%, 5%, and 10% level, respectively.

B.2 Robustness of the Risk Regressions

In this section, we show that our results on the impact of shipping risk on importers’ behavior

from Section 3.2 are robust to a variety of alternative specifications.

First, we use the alternative measure of weather-induced shipping times introduced in

Appendix B.1. As described above, we decompose each trip segment into smaller sub-segments,

assume that vessels travel through these areas at constant speed, and determine for each

day of a vessel’s journey the local weather conditions in a vessel’s current location. We then

compute the average weather a vessel experienced on its journey and use this variable to run

regression (3) of shipping times on weather conditions. We use the weather-induced shipping

times based on this regression, t̃s,weather,alt, to construct our risk measure following the same

steps as described in Section 3.2. Table B.4 shows the results from running regression (8)

with this alternative risk measure. The effects are similar to before: going from the 25th to

the 75th percentile of the risk distribution (61 log points) increases the number of shipping

routes used by 9.9%, the number of suppliers by 6.4%, and reduces total imports by 5.7%.

Next, we analyze a broader risk measure that is constructed by taking the standard

deviation of the residual from running equation (3) without the weather terms. Table B.5

shows the results of the risk regression (8) with this alternative risk measure. An increase

from the 25th to the 75th percentile of the risk distribution (91 log points) increases the

number of routes used by 8.4% and the number of suppliers by 5.2%. Moreover, it decreases

the route HHI, supplier HHI, and total imports by 4.3%, 3.2%, and 5.6%, respectively.

Third, we replace the separate firm and time fixed effects in our baseline specification (8)

with firm-time fixed effects. This specification picks up changes in a firms’ sourcing strategy
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that are common to all imported goods, and identifies our effect from within-firm variation

in sourcing behavior across goods. In this specification, firms that only import a single good

are therefore dropped. The results in Table B.6 are similar to the baseline and increase in

magnitude for all effects except for total imports. Going from the 25th to the 75th percentile

of the weather risk distribution is associated with a 11.5% increase in routes and a 8.0%

increase in the number of suppliers. The route HHI, supplier HHI, and import value drop by

5.2%, 4.4%, and 1.5%, respectively.

Fourth, we show that our results also hold when we use only the riskiness of the importers’

main supplier to construct our measure of risk, rather than a weighted average across all

suppliers. Specifically, we compute the risk measure

̂StdT ime
main

fht−3,t−1 ≡
∑

r∈R(xmain)

ωx
main

fxhr,t−3,t−1
̂StdT imexhrt−3,t−1, (22)

where the main supplier of good h is defined as the one with the largest shipment value to

importer f in the years t− 3 to t− 1. The weighted average is now taken only across the

routes r used by the main supplier, R(xmain) and the weights ωx
main

fxhr,t−3,t−1 are the import

shares of each route for the main supplier. The results of running specification (8) with this

measure are in Table B.7. Going from the 25th to the 75th percentile of shipping risk (42 log

points) increases the number of routes and suppliers by 3.5% and 2.5%, respectively, while

the route HHI, supplier HHI, and total import value fall by 2.1%, 2.1%, and 5.0%. Since

we are not able to compute shipping risk for all main suppliers (for example because they

have fewer than 10 transactions), the number of observations drops relative to the other

regressions.

Table B.8 additionally includes firms with only one supplier in our main specifications,

which are dropped in the baseline. These firms are therefore by definition not diversified in t.

Here, we find that the relationship between shipping risk and the number of suppliers and

routes remains significantly positive, and increases slightly in magnitude. All results remain

strongly significant.

Finally, in Table B.9 we include an additional control for the inventory-sales ratio. We

obtain the beginning of year value of the total inventory of materials for all firms in each

census year from the CMF, and for a subset of firms from the ASM in all other years. These

inventories contain domestically sourced supplies, and are therefore only a proxy of the

inventory of imported inputs. We find that the relationship between shipping risk and the

number of suppliers and routes strengthens once we include the inventory control. However,

conditional on shipping risk, a higher inventory-sales ratio decreases the number of suppliers
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used.

Table B.4: Alternative Measure of Weather Risk

(1) (2) (3) (4) (5)
Dep. Var.: Number of Number of HHI over HHI over Value

Routes Suppliers Routes Suppliers Imported
Std Time 0.162∗∗∗ 0.105∗∗∗ −0.083∗∗∗ −0.067∗∗∗ −0.093∗∗∗

(0.009) (0.008) (0.003) (0.003) (0.011)

Importer-Year FE Y Y Y Y Y
Product FE Y Y Y Y Y
Controls Y Y Y Y Y
R-squared 0.72 0.67 0.46 0.41 0.88
Observations 129, 000 129, 000 129, 000 129, 000 129, 000

Notes: The table shows the coefficients on the standard deviation of the weather-induced shipping times, ̂StdT ime
weather,alt

fht−3,t−1

from specification (8). The risk measure is constructed using the local weather conditions around a vessel’s predicted location on

each day, as described in the text. We consider several dependent variables: the log of the number of routes (col. 1), the log

of the number of foreign suppliers (col. 2), log HHI across routes (col. 3), log HHI across suppliers (col. 4), and the log total

value imported (col. 5). Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure

Guidelines. Standard errors are clustered at the firm level. Regression includes controls for three-year average of weather-induced

shipping times, average unit value paid, the importer’s total imports over the previous three years, and the suppliers’ total

exports to the U.S. over the previous three years. For brevity, the table does not report the coefficients of these regressors. ∗∗∗,
∗∗, and ∗ denote significance at the 1%, 5%, and 10% level, respectively.

Table B.5: Broader Risk Measure

(1) (2) (3) (4) (5)
Dep. Var.: Number of Number of HHI over HHI over Value

Routes Suppliers Routes Suppliers Imported
Std Time 0.093∗∗∗ 0.057∗∗∗ −0.048∗∗∗ −0.035∗∗∗ −0.062∗∗∗

(0.006) (0.006) (0.002) (0.002) (0.007)

Importer FE Y Y Y Y Y
Product FE Y Y Y Y Y
Year FE Y Y Y Y Y
Controls Y Y Y Y Y
R-squared 0.71 0.67 0.45 0.41 0.88
Observations 130, 000 130, 000 130, 000 130, 000 130, 000

Notes: The table shows the coefficients on the standard deviation of the residualized shipping times, ̂StdT ime
alt

fht−3,t−1, from

specification (8). The risk measure is computed using the standard deviation of the residuals obtained from estimating equation

(3) without the weather terms. We consider several dependent variables: the log of the number of routes (col. 1), the log of

the number of foreign suppliers (col. 2), log HHI across routes (col. 3), log HHI across suppliers (col. 4), and the log total

value imported (col. 5). Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure

Guidelines. Standard errors are clustered at the firm level. Regression includes controls for three-year average of weather-induced

shipping times, average unit value paid, the importer’s total imports over the previous three years, and the suppliers’ total

exports to the U.S. over the previous three years. For brevity, the table does not report the coefficients of these regressors. ∗∗∗,
∗∗, and ∗ denote significance at the 1%, 5%, and 10% level, respectively.
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Table B.6: Firm-Time Fixed Effects

(1) (2) (3) (4) (5)
Dep. Var.: Number of Number of HHI over HHI over Value

Routes Suppliers Routes Suppliers Imported
Std Time 0.227∗∗∗ 0.158∗∗∗ −0.103∗∗∗ −0.087∗∗∗ −0.030∗∗∗

(0.010) (0.009) (0.004) (0.004) (0.010)

Importer-Year FE Y Y Y Y Y
Product FE Y Y Y Y Y
Controls Y Y Y Y Y
R-squared 0.75 0.69 0.51 0.45 0.90
Observations 114, 000 114, 000 114, 000 114, 000 114, 000

Notes: The table shows the coefficients on the standard deviation of the weather-induced shipping times, ̂StdT imefht−3,t−1,

from specification (8) for different dependent variables: the log of the number of routes (col. 1), the log of the number of foreign

suppliers (col. 2), log HHI across routes (col. 3), log HHI across suppliers (col. 4), and the log total value imported (col. 5).

The specification is run using firm-time fixed effects, rather than firm and time fixed effects separately, in addition to product

fixed effects. Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure Guidelines.

Standard errors are clustered at the firm level. Regression includes controls for three-year average of weather-induced shipping

times, average unit value paid, the importer’s total imports over the previous three years, and the suppliers’ total exports to the

U.S. over the previous three years. For brevity, the table does not report the coefficients of these regressors. ∗∗∗, ∗∗, and ∗

denote significance at the 1%, 5%, and 10% level, respectively.

Table B.7: Risk Measure Based on Main Supplier

(1) (2) (3) (4) (5)
Dep. Var.: Number of Number of HHI over HHI over Value

Routes Suppliers Routes Suppliers Imported
Std Time 0.085∗∗∗ 0.061∗∗∗ −0.051∗∗∗ −0.051∗∗∗ −0.120∗∗∗

(0.013) (0.009) (0.005) (0.003) (0.011)

Importer FE Y Y Y Y Y
Product FE Y Y Y Y Y
Year FE Y Y Y Y Y
Controls Y Y Y Y Y
R-squared 0.72 0.65 0.51 0.45 0.89
Observations 94, 000 94, 000 94, 000 94, 000 94, 000

Notes: The table shows the coefficients on the standard deviation of the weather-induced shipping times, ̂StdT ime
main

fht−3,t−1,

from specification (8) for different dependent variables: the log of the number of routes (col. 1), the log of the number of foreign

suppliers (col. 2), log HHI across routes (col. 3), log HHI across suppliers (col. 4), and the log total value imported (col. 5). The

specification uses as risk measure the standard deviation of weather-induced shipping times of the main supplier, as described in

equation (22). Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure Guidelines.

Standard errors are clustered at the firm level. Regression includes controls for three-year average of weather-induced shipping

times, average unit value paid, the importer’s total imports over the previous three years, and the suppliers’ total exports to the

U.S. over the previous three years. For brevity, the table does not report the coefficients of these regressors. ∗∗∗, ∗∗, and ∗

denote significance at the 1%, 5%, and 10% level, respectively.
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Table B.8: Including Firms with One Supplier

(1) (2) (3) (4) (5)
Dep. Var.: Number of Number of HHI over HHI over Value

Routes Suppliers Routes Suppliers Imported
Std Time 0.183∗∗∗ 0.116∗∗∗ −0.090∗∗∗ −0.067∗∗∗ −0.073∗∗∗

(0.009) (0.008) (0.003) (0.003) (0.009)

Importer FE Y Y Y Y Y
Product FE Y Y Y Y Y
Year FE Y Y Y Y Y
Controls Y Y Y Y Y
R-squared 0.71 0.69 0.49 0.51 0.86
Observations 192, 000 192, 000 192, 000 192, 000 192, 000

Notes: The table shows the coefficients on the standard deviation of the weather-induced shipping times, ̂StdT imefht−3,t−1,

from specification (8) for different dependent variables: the log of the number of routes (col. 1), the log of the number of foreign

suppliers (col. 2), log HHI across routes (col. 3), log HHI across suppliers (col. 4), and the log total value imported (col. 5).

The specification includes importers with only one supplier for a given product per year, in addition to importers with multiple

suppliers. Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure Guidelines.

Standard errors are clustered at the firm level. Regression includes controls for three-year average of weather-induced shipping

times, average unit value paid, the importer’s total imports over the previous three years, and the suppliers’ total exports to the

U.S. over the previous three years. For brevity, the table does not report the coefficients of these regressors. ∗∗∗, ∗∗, and ∗

denote significance at the 1%, 5%, and 10% level, respectively.

Table B.9: Shipping Time Risk and Import Demand with Inventory-Sales Ratio

(1) (2) (3) (4) (5)
Dep. Var.: Number of Number of HHI over HHI over Value

Routes Suppliers Routes Suppliers Imported
Std Time 0.201∗∗∗ 0.128∗∗∗ −0.097∗∗∗ −0.077∗∗∗ −0.088∗∗∗

(0.011) (0.010) (0.004) (0.004) (0.013)

Inventory- −0.068 −0.104∗∗ 0.002 0.029∗∗∗ −0.306∗∗

Sales Ratio (0.065) (0.042) (0.016) (0.010) (0.128)

Importer FE Y Y Y Y Y
Product FE Y Y Y Y Y
Year FE Y Y Y Y Y
Controls Y Y Y Y Y
R-squared 0.71 0.67 0.44 0.41 0.89
Observations 91, 500 91, 500 91, 500 91, 500 91, 500

Notes: The table shows the coefficients on the standard deviation of the weather-induced shipping times, ̂StdT imefht−3,t−1,

from specification (8) for different dependent variables: the log of the number of routes (col. 1), the log of the number of foreign

suppliers (col. 2), log HHI across routes (col. 3), log HHI across suppliers (col. 4), and the log total value imported (col. 5).

The specification includes the inventory-to-sales ratio as additional control, computed as beginning of year inventories divided

by sales for the firm in year t from the CMF or ASM. Number of observations has been rounded to the nearest 1000 as per U.S.

Census Bureau Disclosure Guidelines. Standard errors are clustered at the firm level. Regression includes controls for three-year

average of weather-induced shipping times, average unit value paid, the importer’s total imports over the previous three years,

and the suppliers’ total exports to the U.S. over the previous three years. For brevity, the table does not report the coefficients

of these regressors. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% level, respectively.
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C Additional Results for Section 4

C.1 Derivation of Expression (14)

Firms choose their inputs in two stages. In the first, firms choose N , x and xD under

uncertainty about the shipping times of their foreign inputs. After the uncertainty is realized,

firms choose the level of labor conditional on the choices for N , x and xD. Combining the

production function (10) and the expression for revenues (13), realized firm profits in the

second stage are given by

π̂f = φf
σ−1
σ l(1−γ)

σ−1
σ

x ε−1
ε

D +

(
N∑
i=1

α̂i

) ε−1
ε

x
ε−1
ε

γ ε
ε−1

σ−1
σ

P
σ−1
σ S1/σ − pDxD −NpMx− wl − wNF, (23)

where we have used that in stage 1 firms choose xi = x since suppliers are ex-ante symmetric,

and {α̂i} are the realized supplier qualities which depend on the realized shipping times.

Given input choices from the first stage (xD, x,N), and realizations of qualities {αi}, the
optimal choice of labor is:

l̂f =

γ̃φf σ−1
σ

x ε−1
ε

D +

(
N∑
i=1

α̂i

) ε−1
ε

x
ε−1
ε

γ ε
ε−1

σ−1
σ

P
σ−1
σ S1/σw−1


1

1−γ̃

(24)

where γ̃ ≡ (1− γ) σ−1
σ
. The associated optimal profits are given by:

χf

x ε−1
ε

D +

(
N∑
i=1

α̂i

) ε−1
ε

x
ε−1
ε

ψ

− pDxD −NpMx− wNF, (25)

where χf ≡
(
φf

σ−1
σ P

σ−1
σ S1/σ

) 1
1−γ̃

w− γ̃
1−γ̃

[
(γ̃)

γ̃
1−γ̃ − (γ̃)

1
1−γ̃

]
and ψ ≡ γ ε

ε−1
σ−1
σ

1
1−γ̃ . Taking

expectations of this expression yields equation (14) in the main text.
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C.2 Derivations for Section 4.3

Derivation of expression (15). In the case without the domestic input, given the realization

of input qualities, firm profits are

π = P
σ−1
σ S1/σ

(
φl1−γ

(
N∑
i=1

αix

)γ)σ−1
σ

− wFN −NpMx− wl.

Letting γ̃ ≡ (1− γ) σ−1
σ
, the first order condition with respect to labor is

γ̃P
σ−1
σ S1/σφ

σ−1
σ lγ̃−1

(
N∑
i=1

αix

)γ σ−1
σ

= w

Solving for labor and plugging back into profits yields:

π =
(
γ̃

γ̃
1−γ̃ − γ̃

1
1−γ̃

)(
P

σ−1
σ S1/σφ

σ−1
σ

) 1
1−γ̃

(
N∑
i=1

αix

)γ σ−1
σ

1
1−γ̃

w− γ̃
1−γ̃ − wFN −NpMx.

Letting

χ ≡
(
γ̃

γ̃
1−γ̃ − γ̃

1
1−γ̃

)(
φ
σ−1
σ P

σ−1
σ S1/σ

) 1
1−γ̃

w− γ̃
1−γ̃

and ψ be defined as in the main text, the ex-ante firm profit maximization problem is:

max
x,N

χxψE

(
N∑
i=1

αi

)ψ

−NpMx− wNF.

The first order condition with respect to x gives:

ψxψ−1χfE

(
N∑
i=1

αi

)ψ

−NpM = 0 (26)

Using this condition to eliminate x yields expression (15) in the main text, where χ̃ ≡(
ψ

ψ
1−ψ − ψ

1
1−ψ

)
p
− ψ

1−ψ
M χ

1
1−ψ .

Derivation of expression (16). A second-order approximation of the function ᾱψ around

E [α] yields

ᾱψ ≈ (E [α])ψ + ψ (E [α])ψ−1 (ᾱ− E [α]) + ψ
(ψ − 1)

2
(E [α])ψ−2 (ᾱ− E [α])2 (27)
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Taking expectations on both sides gives

E
[
ᾱψ
]
≈ (E [α])ψ + ψ

(ψ − 1)

2
(E [α])ψ−2 E

[
(ᾱ− E [α])2

]
(28)

since E [ᾱ] = E [α]. Noting that V [ᾱ] = E
[
(ᾱ− E [α])2

]
and that V [ᾱ] = V [α] /N , we plug

this into equation (15) to obtain expression (16).

Proof of Proposition 1. For continuous N, the first order condition with respect to N is

given by:

G (N,V [α]) ≡ χ̃

(
(E [α])ψ − ψ

(1− ψ)

2
(E [α])ψ−2 1

N
V [α]

) ψ
1−ψ ψ

2
(E [α])ψ−2N−2V [α]−wF = 0.

Using the implicit function theorem:

∂N∗

∂V [α]
= −

GV[α]

GN

,

where Gy ≡ ∂G/∂y. Taking these partial derivatives and plugging them back into the previous

expression yields:

ϵN∗,V[α] =
∂N∗

∂V [α]

V [α]

N∗ = −

(
1−

ψ2

2
(E[α])ψ−2V[α]

N(E[α])ψ−ψ (1−ψ)
2

(E[α])ψ−2V[α]

)
(

ψ2

2
(E[α])ψ−2V[α]

N(E[α])ψ−ψ (1−ψ)
2

(E[α])ψ−2V[α]
− 2

) < 1 (29)

Note that the denominator is negative as GN < 0 follows from the second order condition at

the optimal N. The numerator is positive whenever condition (17) in the main text holds;

this establishes the first part of the proposition.

Relying on the first order condition with respect to x in (26), import values are given by:

NxpM = (pM)−
ψ

1−ψ

(
ψχ̃E

[
(ᾱ)ψ

]) 1
1−ψ

≈ (pM)−
ψ

1−ψ

(
ψχ̃

(
(E [α])ψ − ψ

(1− ψ)

2
(E [α])ψ−2 1

N
V [α]

)) 1
1−ψ

,

where the second line uses the approximation in (27). It follows that the effect of a mean

preserving spread on import values depends on its effect on the variance of average supplier
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quality V [α] /N . In turn, this effect is given by:

∂V [α] /N

∂V [α]
=

1− ϵN∗,V[α]

N
> 0

as ϵN∗,V[α] < 1 follows from (29). It follows that, regardless of whether the optimal N falls or

increases after a mean preserving spread, V [α] /N increases and import values fall.

C.3 Heterogeneity in the Response to Risk

In this section, we investigate how the importers’ response to risk depends on productivity.

We establish the following proposition.

Proposition 2. (Heterogeneity of the Effect of Risk) Consider the case without a domestic

input in production. Let M denote import value. Then:

∂

∂φ
ϵN∗,V[α] > 0 and

∂

∂φ
ϵM,V[α]≥ 0.

Thus, more efficient firms feature a greater change in the number of suppliers, and a smaller

reduction in total imports, after an increase in V [α] .

Proof. Note first that
∂N∗

∂φ
= −Gφ

GN

≥ 0

as Gφ > 0. That is, more efficient firms select a greater number of suppliers. Note next that

ϵN∗,V[α] depends on efficiency only through N. Using (29), it is straightforward to show that:

∂ϵN∗,V[α]

∂N∗ > 0,

which establishes the first part of the proposition. Since import value M ≡ Nxp∗ is

proportional to expected revenues, we have that:

ϵM,V[α] ≡
∂ logM

∂ logV [α]
=
∂ log

(
Eᾱψ

)
∂ logV [α]

Moreover, relying on the approximation in (28), we have that:

∂
(
Eᾱψ

)
∂V [α]

= −ψ (1− ψ)

2
(E [α])ψ−2

{
1− ϵN∗,V[α]

N

}
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It follows that:

ϵM,V[α] = −
ψ (1−ψ)

2
(E [α])ψ−2V [α]

N (E [α])ψ − ψ (1−ψ)
2

(E [α])ψ−2V [α]

{
1− ϵN∗,V[α]

}
≤ 0

Note that the right-hand side of this expression increases with efficiency (as both N and

ϵN∗,V[α] increase), proving the result.

Intuitively, larger firms can more easily afford the fixed costs of adding suppliers when

faced with greater risk, and feature a larger increase (or a smaller decrease) in the number of

suppliers when faced with greater volatility in supplier quality. As a result, they manage to

attenuate the resulting increase in exposure to risk and see their import values fall by less.

Lastly, Proposition 2 also implies that larger firms feature a smaller decline in sales when

faced with heightened risk.

C.4 The Effects of Changes in Expected Quality

In the main text, we study the effects of a mean preserving spread to input qualities. Because

our empirical exercises involve days and not qualities, it is necessary to also explore the

effect of changes in expected quality. A higher expected quality affects expected revenue in

two ways. There is a direct positive effect that stems from output being increasing in input

qualities and is captured by the first term in expression (16). A second effect is that a higher

expected quality makes a given variance less important for expected revenue, as captured

by the second term in expression (16). In other words, the importance of the variance of

quality for expected revenues is mediated by the mean quality. By making a given variance

less detrimental, this effect reduces the incentive to adding suppliers. This negative effect

turns out to be dominated by the positive direct effect whenever the variance of quality is

large relative to its mean, as captured by the coefficient of variation. The following result

formalizes this argument.

Proposition 3. Consider the case without a domestic input in production. Let N∗be the

optimal number of suppliers. An increase in the mean of the supplier-level quality E [α],

holding constant its variance V [α], increases the returns to adding suppliers

∂2R̃

∂N∂E [α]

∣∣∣∣∣
N=N∗

> 0
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whenever:
1

N∗
V [α]

(E [α])2
>

2− 3ψ

(1− ψ) (2− ψ)

2

ψ
. (30)

Note that, when ψ < 2/3, the right hand side of condition (30) is lower than the right hand

side of condition (17) in the main text.36 It follows that in the region of parameters where a

mean preserving spread to quality increases the returns to adding suppliers (i.e., condition

(17) is satisfied), there is a sub-region where an increase in expected quality increases the

returns to adding suppliers and a sub-region where the opposite happens.

Proof. Note that (16) can be written as:

∂R̃

∂N
= χ̃

ψ

2
N−2

(
(E [α])

3ψ−2
ψ − (E [α])

ψ−2
ψ ψ

(1− ψ)

2

1

N
V [α]

) ψ
1−ψ

V [α]

The marginal effect of a change in the mean of input quality, holding its variance constant,

on the returns to adding suppliers is:

∂2R̃

∂N∂E [α]
∝ ψ

1− ψ

(
(E [α])

3ψ−2
ψ − (E [α])(ψ−2) 1

ψ ψ
(1− ψ)

2

1

N
V [α]

) ψ
1−ψ−1

×

(
3ψ − 2

ψ
(E [α])

3ψ−2
ψ

−1 − (ψ − 2) (E [α])(ψ−2) 1
ψ
−1 (1− ψ)

2

1

N
V [α]

)
.

Because the first term on the right hand side is positive, the sign of this crossed derivative

depends on the sign of the second term, which is positive whenever:

1

N

V [α]

(E [α])2
>

2− 3ψ

(1− ψ) (2− ψ)

2

ψ

If ψ > 2/3, then the right hand side of this expression is negative and the inequality

holds. When ψ < 2/3, then the above condition is required for the crossed derivative to be

positive.

36This follows from the fact that
2− 3ψ

(1− ψ) (2− ψ)
< 1

for ψ ∈ (0, 2/3) .
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C.5 Additional Details on Equilibrium

After shipping times have been realized, the realized output of a firm of type f is given by

ŷf = φ
1

1−γ̃
f

[
γ̃P

σ−1
σ S1/σw−1

] 1−γ
1−γ̃

x ε−1
ε

D +

(
N∑
i=1

α̂i

) ε−1
ε

x
ε−1
ε

γ ε
ε−1

1
1−γ̃

where α̂i is the realized input quality. Because there is a continuum of identical firms of each

type, aggregate output is deterministic and given by yf ≡ E [ŷf ] . Prices are then determined

by the demand from consumers and the domestic input producers, pf = y
− 1
σ

f P
σ−1
σ S1/σ, who

face no risk. Aggregate labor demand by firms of type f is lf ≡ E
[
l̂f

]
where l̂f is given by

(24). Aggregate profits are given by:

Π =

∫
f

(pfyf − pDxDf −NfpMxf − wlf −NfF ) df,

where xDf , xf and Nf are the optimal input choices in stage 1 of type f firms. An equilibrium

(S, P ) is attained whenever the associated firm input choices, prices, and aggregate profits

are consistent with equations (18), (19) and (20).

C.6 Additional Results for Counterfactuals

Table C.1 contains the effects of the climate change and port congestion counterfactuals on

average sales, profits, and labor. The calibrated model predicts increases of about 0.3-0.5%

in these variables for the climate change counterfactual, and 0.6-0.8% for the port congestion

(columns 1 and 4). These effects are driven primarily by general equilibrium forces: greater

risk increases the cost of foreign inputs and hence the price level P , and increases domestic

spending S, as firms substitute towards domestically produced inputs. Instead, when S and

P are kept fixed, the model predicts decreases in sales, profits and labor of about 1-1.2% for

the climate counterfactual and 2.2-2.6% for port congestion (columns 2 and 5), reflecting the

effects of increased volatility in supplier quality—see Section 4.3.

We next compare these counterfactuals to a back-of-the-envelope calculation of the

changes in sales, profits, and labor using the reduced-form estimates of the effects of delays

due to weather shocks from Table 4. We start by mapping the increase in the standard

deviation of shipping times in each of the two counterfactuals into an increase in the share

of costs which are delayed—i.e., the variable in the right-hand-side of the reduced-form

regressions in Table 4. Holding input choices constant, the change in the expected share of
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Table C.1: Additional Outcomes After Counterfactuals

Climate Change Port Congestion
(1) (2) (3) (4) (5) (6)

Growth in (%) Model Model P.E. Back-of-the-envelope Model Model P.E. Back-of-the-envelope
Sales 0.32 -1.09 -1.16 0.65 -2.38 -2.56
Profits 0.36 -1.18 -0.76 0.60 -2.58 -1.69
Labor 0.49 -1.00 -0.2 0.84 -2.18 -0.44

Notes: The table reports the percentage change in average sales, profits and labor associated with (i) an

increase in the standard deviation of log shipping times of 18.5% (columns 1-3) and (ii) an increase in the

standard deviation of shipping times of 52% (columns 4-6). The Model and Model P.E. columns report

the predictions of the calibrated model, with Model P.E. keeping S, P constant. The back-of-the-envelope

columns report predictions using the reduced-form coefficients of Table 4.

delayed inputs after a change in the distribution of shipping times is given by:

∆E [FracDelayed] = sIM∆E [sN ] ,

where sN is the share of suppliers that are delayed and sIM is the share of expenditure on

imported inputs in total costs. We perform our calculation for a representative firm with

sIM = 0.16—resulting from the observed import share in materials of 0.28 and the share

of materials in total costs of 0.58 in our data. Following the empirical analysis of Section

3.1, we consider a supplier’s shipment to be delayed whenever its shipping time exceeds

the 95th percentile of shipping times in the pre-counterfactual equilibrium. Assuming that

shipping times are log-normally distributed, we simulate 1,000 draws of shipping times for

each supplier after the counterfactual increase in risk. We compute the counterfactual E [sN ]

as the average fraction of suppliers delayed (sN = 0.05 in the pre-counterfactual equilibrium).

We perform this calculation for each risk type and take the average.

Armed with the change in the expected fraction of delayed costs for each counterfactual,

we use the coefficients of Table 4 to compute the predicted changes in sales, profits, and labor.

We find reductions in these variables of about 0.2-1.2% for the climate counterfactual, and of

0.5-2.6% for the port congestion (columns 3 and 6 in Table C.1). Because the reduced-form

estimates of the cost of delays do not capture changes in general equilibrium variables, which

are absorbed by the time fixed effects, we compare the back-of-the-envelope calculations to

the predictions of the model in partial equilibrium. The model’s predictions of sales and

profits line up closely to those implied by the reduced-form estimates. The predictions for

labor are somewhat less aligned, with the model over-predicting the magnitude of the decline.
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